Transformer-enhanced spatiotemporal neural network for post-processing of precipitation forecasts

计算机科学 定量降水预报 降水 卷积神经网络 分位数 人工神经网络 变压器 数据挖掘 人工智能 环境科学 气象学 统计 数学 电压 物理 量子力学
作者
Mingheng Jiang,Bin Weng,Jiazhen Chen,Tianqiang Huang,Feng Ye,Lijun You
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:630: 130720-130720 被引量:18
标识
DOI:10.1016/j.jhydrol.2024.130720
摘要

Numerical Weather Prediction (NWP) models are extensively utilized worldwide and have played a pivotal role in weather forecasting. Precipitation is subject to various intricate factors, rendering it one of the most challenging factors to predict. Additional post-processing steps are required to reduce biases and achieve reliable predictions for precipitation-related decision-making. In this work, we propose a transformer-enhanced spatiotemporal neural network called TransLSTMUNet for short- and medium-range precipitation post-processing. Firstly, TransLSTMUNet employs convolutional operators to extract localized meteorological features. Secondly, it capitalizes on transformer architecture to enrich these extracted features with a broader, global perspective of spatial information. Thirdly, TransLSTMUNet leverages ConvLSTM to further enhance the features with temporal information. Furthermore, to address challenges posed by imbalanced distribution of precipitation intensity, we design a novel loss function called quantile weighted mean squared error (QWMSE). QWMSE simultaneously considers both normal and intense precipitation during the model' s training phase. In the experiments, the THORPEX Interactive Grand Global Ensemble (TIGGE) dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) is used as input for post-processing the precipitation forecasts. The experiments show that the precipitation forecasts post-processed by TransLSTMUNet exhibit the best overall performance compare with the eight post-processing baselines. It significantly improves the forecast performance of TIGGE forecasts. Specifically, TransLSTMUNet enhances the accuracy (ACC) metric by 12.14 % and increases the threat scores (TS) for 24-hour accumulated precipitation of 0.1 mm, 10.0 mm, 25.0 mm, and 50.0 mm by 8.30 %, 9.77 %, 31.60 %, and 51.25 % respectively. By effectively integrating the strengths of convolutional and transformer methodologies, the proposed TransLSTMUNet model offers a novel approach for post-processing precipitation forecasting. This model design has the potential to inspire various other research avenues within the hydrological domain and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TJC完成签到,获得积分10
刚刚
Xiaoxiao应助福明明采纳,获得10
刚刚
宋不凡发布了新的文献求助10
1秒前
JJJXG完成签到,获得积分10
6秒前
燕燕于飞发布了新的文献求助10
6秒前
7秒前
夏紫儿完成签到 ,获得积分10
8秒前
8秒前
Dalinn完成签到,获得积分10
8秒前
shelemi完成签到,获得积分10
8秒前
wanci应助等待世平采纳,获得30
10秒前
哈基米德应助李鑫采纳,获得10
10秒前
woseaco发布了新的文献求助30
11秒前
12秒前
顾矜应助mao采纳,获得10
12秒前
归来王者完成签到,获得积分10
13秒前
HUA发布了新的文献求助10
13秒前
Owen应助大喵采纳,获得10
14秒前
fan关注了科研通微信公众号
14秒前
15秒前
tsntn完成签到,获得积分10
16秒前
Windy发布了新的文献求助10
17秒前
17秒前
邵裘发布了新的文献求助10
18秒前
19秒前
共享精神应助sinohan采纳,获得10
19秒前
19秒前
19秒前
20秒前
黑马王子发布了新的文献求助10
22秒前
22秒前
852应助fx采纳,获得10
23秒前
23秒前
mao发布了新的文献求助10
25秒前
大喵发布了新的文献求助10
25秒前
ww发布了新的文献求助10
25秒前
liny发布了新的文献求助10
25秒前
26秒前
今天也要好好学习完成签到,获得积分10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133914
求助须知:如何正确求助?哪些是违规求助? 3670792
关于积分的说明 11607179
捐赠科研通 3367007
什么是DOI,文献DOI怎么找? 1849831
邀请新用户注册赠送积分活动 913401
科研通“疑难数据库(出版商)”最低求助积分说明 828629