Failure Probability Prediction for Offshore Floating Structures Using Machine Learning

多项式混沌 维数之咒 替代模型 子空间拓扑 计算机科学 不确定度量化 蒙特卡罗方法 极限(数学) 转化(遗传学) 数学优化 状态空间 解算器 随机变量 算法 数学 人工智能 机器学习 数学分析 生物化学 统计 化学 基因
作者
HyeongUk Lim
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (03): 1254-1270
标识
DOI:10.2118/218408-pa
摘要

Summary Accurately estimating the failure probability is crucial in designing civil infrastructure systems, such as floating offshore platforms for oil and gas processing/production, to ensure their safe operation throughout their service periods. However, as a system becomes complex, the evaluation of a limit state function may involve the use of an external computer solver, resulting in a significant computational burden to perform Monte Carlo simulations (MCS). Moreover, the high-dimensionality of the limit state function may limit efficient sampling of input variables due to the “curse of dimensionality.” To address these issues, an efficient machine learning framework is proposed, combining polynomial chaos expansion (PCE) and active subspace. This will enable the accurate and efficient evaluation of the failure probability of an offshore structure, which typically involves a large number of uncertain parameters. Unlike conventional PCE schemes that use the original random variable space or the auxiliary variable space for building a surrogate model, the proposed method utilizes a reduced-dimension space to circumvent the “curse of dimensionality.” An appropriate coordinate transformation is first sought so that most of the variability of a limit state function can be accounted for. Next, a PCE surrogate limit state function is constructed on the derived low-dimensional “active subspace.” The Gram-Schmidt orthogonalization process is used for making basis polynomial functions, which is particularly effective when input random parameters do not follow the Askey scheme and/or when a dependence structure between the input parameters exists. Therefore, a nonlinear iso-probabilistic transformation, which makes the convergence of a surrogate to the true model difficult, is not required, unlike traditional PCE. Numerical examples, including limit state functions related to structural dynamics problems, are presented to illustrate the advantages of the proposed method in estimating failure probabilities for complex structural systems. Specifically, the method exhibits significantly improved efficiency in estimating the failure probability of an offshore floating structure without compromising accuracy as compared to traditional PCE and MCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助hyskoa采纳,获得10
刚刚
公西寄凡发布了新的文献求助30
1秒前
团团完成签到 ,获得积分10
1秒前
一团小煤球完成签到,获得积分10
2秒前
2秒前
Mic完成签到,获得积分10
2秒前
彭于晏应助蝶恋花采纳,获得10
3秒前
洁净艳一发布了新的文献求助10
3秒前
研友_VZG7GZ应助无限的笑翠采纳,获得10
4秒前
十七发布了新的文献求助10
4秒前
4秒前
haix应助Ninth采纳,获得30
5秒前
5秒前
SciGPT应助kk采纳,获得30
6秒前
6秒前
HYLynn应助科研小牛马采纳,获得10
7秒前
7秒前
丰荣发布了新的文献求助10
7秒前
Murphy发布了新的文献求助10
8秒前
ZMYI发布了新的文献求助10
8秒前
热心市民应助廖翰彬采纳,获得30
9秒前
洁净艳一完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
11秒前
11秒前
上官若男应助lay采纳,获得10
12秒前
12秒前
李健的小迷弟应助手残症采纳,获得10
15秒前
完美妙海发布了新的文献求助10
16秒前
北笙发布了新的文献求助10
17秒前
彭于晏应助YXH采纳,获得10
17秒前
17秒前
18秒前
18秒前
18秒前
hyskoa发布了新的文献求助10
18秒前
19秒前
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
A monograph of the genera Conocybe and Pholiotina in Europe 200
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
The direct observation of dislocations 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836785
求助须知:如何正确求助?哪些是违规求助? 3379022
关于积分的说明 10507257
捐赠科研通 3098893
什么是DOI,文献DOI怎么找? 1706622
邀请新用户注册赠送积分活动 821120
科研通“疑难数据库(出版商)”最低求助积分说明 772445