亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intra- and peritumoral radiomics features based on multicenter automatic breast volume scanner for noninvasive and preoperative prediction of HER2 status in breast cancer: a model ensemble research

无线电技术 乳腺癌 特征(语言学) 数据集 医学 计算机科学 交叉验证 特征选择 放射科 模式识别(心理学) 人工智能 癌症 内科学 语言学 哲学
作者
Hui Wang,Wei Chen,Shanshan Jiang,Ting Li,Fei Chen,Junqiang Lei,Ruixia Li,Lili Xi,Shunlin Guo
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1): 5020-5020 被引量:13
标识
DOI:10.1038/s41598-024-55838-4
摘要

Abstract The aim to investigate the predictive efficacy of automatic breast volume scanner (ABVS), clinical and serological features alone or in combination at model level for predicting HER2 status. The model weighted combination method was developed to identify HER2 status compared with single data source model method and feature combination method. 271 patients with invasive breast cancer were included in the retrospective study, of which 174 patients in our center were randomized into the training and validation sets, and 97 patients in the external center were as the test set. Radiomics features extracted from the ABVS-based tumor, peritumoral 3 mm region, and peritumoral 5 mm region and clinical features were used to construct the four types of the optimal single data source models, Tumor, R3mm, R5mm, and Clinical model, respectively. Then, the model weighted combination and feature combination methods were performed to optimize the combination models. The proposed weighted combination models in predicting HER2 status achieved better performance both in validation set and test set. For the validation set, the single data source model, the feature combination model, and the weighted combination model achieved the highest area under the curve (AUC) of 0.803 (95% confidence interval [CI] 0.660–947), 0.739 (CI 0.556,0.921), and 0.826 (95% CI 0.689,0.962), respectively; with the sensitivity and specificity were 100%, 62.5%; 81.8%, 66.7%; 90.9%,75.0%; respectively. For the test set, the single data source model, the feature combination model, and the weighted combination model attained the best AUC of 0.695 (95% CI 0.583, 0.807), 0.668 (95% CI 0.555,0.782), and 0.700 (95% CI 0.590,0.811), respectively; with the sensitivity and specificity were 86.1%, 41.9%; 61.1%, 71.0%; 86.1%, 41.9%; respectively. The model weighted combination was a better method to construct a combination model. The optimized weighted combination models composed of ABVS-based intratumoral and peritumoral radiomics features and clinical features may be potential biomarkers for the noninvasive and preoperative prediction of HER2 status in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王王碎冰冰应助徐对话采纳,获得30
5秒前
16秒前
烟花应助危机的尔琴采纳,获得10
22秒前
31秒前
危机的尔琴完成签到,获得积分10
31秒前
Leee完成签到,获得积分20
32秒前
35秒前
35秒前
Leee发布了新的文献求助10
40秒前
43秒前
51秒前
icoo发布了新的文献求助10
57秒前
小g完成签到,获得积分10
1分钟前
小白完成签到 ,获得积分10
1分钟前
浮游应助Wei采纳,获得10
1分钟前
高大的清涟完成签到 ,获得积分10
1分钟前
003完成签到,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
charih完成签到 ,获得积分10
1分钟前
行走完成签到,获得积分10
1分钟前
001完成签到,获得积分0
1分钟前
lemon发布了新的文献求助10
1分钟前
002完成签到,获得积分0
1分钟前
矜持完成签到 ,获得积分10
1分钟前
我是老大应助icoo采纳,获得10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
寮信完成签到 ,获得积分10
2分钟前
2分钟前
icoo发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
CodeCraft应助icoo采纳,获得10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
AneyWinter66应助七大洋的风采纳,获得10
2分钟前
2分钟前
12A发布了新的文献求助10
3分钟前
Ashao完成签到 ,获得积分10
3分钟前
3分钟前
李健应助科研通管家采纳,获得10
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628282
求助须知:如何正确求助?哪些是违规求助? 4716386
关于积分的说明 14963951
捐赠科研通 4785999
什么是DOI,文献DOI怎么找? 2555502
邀请新用户注册赠送积分活动 1516781
关于科研通互助平台的介绍 1477332