A data driven recurrent neural network approach for reproduction of variable visuo-haptic force feedback in surgical tool insertion

计算机科学 循环神经网络 触觉技术 降维 人工智能 均方误差 职位(财务) 还原(数学) 字错误率 人工神经网络 模拟 数学 统计 几何学 财务 经济
作者
P. V. Sabique,P. Ganesh,K. Sridharan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122221-122221 被引量:3
标识
DOI:10.1016/j.eswa.2023.122221
摘要

The surge of interest in haptic technology is due to inspirational advances in the robotic-assisted surgical system, where haptics has the role of delivering tactile feedback for enhancement of user experience. This work presents a Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN) framework with Dimensionality Reduction (DR) and a Cyclical Learning Rate (CLR) optimizer for reproducing variable forces produced in different skin layers during the performance of various surgical procedures. This paper deals with online estimation of the force parameters of original porcine skin, and the same has been tested in real-time and Visuo-haptic environment for training surgeons. The proposed model has processed both spatial and temporal information acquired from three different dataset, surgical tools and manipulator. The results of proposed framework RNN-LSTM + DR + CLR show a 9.23 % & 3.8 % improvement in force prediction accuracy in real-time and 7.11 % & 1.68 % improvement in Visuo-haptic simulation compared to the RNN and RNN-LSTM prediction frameworks, respectively. The sensitivity analysis shows that torque (97.62 %), position (94.54 %), deformation (93.20 %), stiffness (89.23 %), tool diameter (87.25 %), rotation (63.21 %), and orientation (62.56 %) features have a respective impact on the predicted force. The performance of RNN-LSTM was better when the network was optimized with dimensionality reduction, loss function as Root Mean Square Error (RMSE), and learning rate as Cyclical Learning Rate (CLR). The research outcomes show the effectiveness of the method for estimating the force on the surface and internal layers of the skin. Also, the method has applications in real-time surgical tasks and surgeon training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安青牛应助兴奋蘑菇采纳,获得10
刚刚
1秒前
辛勤笑旋发布了新的文献求助10
2秒前
哟哦发布了新的文献求助10
2秒前
单纯青槐发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
sxmt123456789完成签到,获得积分10
3秒前
奶桃七七发布了新的文献求助10
3秒前
4秒前
干饭完成签到,获得积分10
4秒前
4秒前
深情惜梦发布了新的文献求助10
5秒前
奶桃七七发布了新的文献求助10
6秒前
7秒前
HJJHJH发布了新的文献求助30
7秒前
7秒前
郝永岗给郝永岗的求助进行了留言
8秒前
posh完成签到 ,获得积分10
8秒前
qwer发布了新的文献求助10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
晚香玉完成签到,获得积分10
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
周城发布了新的文献求助10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
彭于彦祖应助科研通管家采纳,获得150
9秒前
浮游应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
haishixigua完成签到,获得积分10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
守护发布了新的文献求助10
9秒前
所所应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
10秒前
changping应助科研通管家采纳,获得150
10秒前
田様应助科研通管家采纳,获得10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447