声动力疗法
活性氧
材料科学
谷胱甘肽
氢氧化物
纳米技术
化学
生物化学
无机化学
酶
作者
Zhuolin Cui,Tingting Hu,Shuqing Yang,Yu-Sheng Yang,Xueyan Liu,Tao Wang,Huizhi Chen,Chunlai Zeng,Ruizheng Liang,Yubin Zhou
标识
DOI:10.1016/j.cej.2023.147463
摘要
Sonodynamic therapy (SDT) has attracted increasing attention owing to its superior tissue penetration compared with other therapies. However, the development of multifunctional sonosensitizers with imaging capability and high production efficiency of reactive oxygen species (ROS) is still a challenge for current sonodynamic cancer therapy. Herein, we report the design and preparation of amorphous 2D Mn-doped CoMo-layered double hydroxide (a-Mn-CoMo-LDH) nanosheets (NSs) through acid etching-induced crystalline-to-amorphous phase transformation as a highly active nano-agent for magnetic resonance imaging (MRI)-guided SDT. The a-Mn-CoMo-LDH NSs exhibit superior ROS production capacity compared with amorphous CoMo-LDH NSs (∼1.3 times) and crystalline Mn-CoMo-LDH NSs (∼3.9 times) under ultrasound (US) irradiation, which is ∼ 9.9 times of the previously reported TiO2 sonosensitizer. The doped Mn4+ in the a-Mn-CoMo-LDH NSs can not only decompose H2O2 into O2 to alleviate the hypoxia level in tumor microenvironment (TME), but also consume glutathione (GSH) to reduce its clearance of ROS, promoting the SDT performance synergistically. Importantly, the GSH consumption can partially reduce the Mn4+ to Mn2+ within the tumors, which can serve as an agent for T1-weighted MRI, thus endowing the a-Mn-CoMo-LDH NSs with excellent MRI capability. Therefore, the as-prepared a-Mn-CoMo-LDH NSs with polyethylene glycol modification can be used as an efficient nano-agent for MRI-guided SDT, which can effectively achieve apoptosis of cancer cells in vitro and eradication of tumors in vivo under US irradiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI