亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A transformer-based deep learning approach for fairly predicting post-liver transplant risk factors

肝移植 计算机科学 机器学习 人工智能 任务(项目管理) 肝病 人工神经网络 匹配(统计) 深度学习 医学 移植 内科学 病理 管理 经济
作者
Can Li,Xiaoqian Jiang,Kai Zhang
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:149: 104545-104545 被引量:6
标识
DOI:10.1016/j.jbi.2023.104545
摘要

Liver transplantation is a life-saving procedure for patients with end-stage liver disease. There are two main challenges in liver transplant: finding the best matching patient for a donor and ensuring transplant equity among different subpopulations. The current MELD scoring system evaluates a patient's mortality risk if not receiving an organ within 90 days. However, the donor-patient matching should also consider post-transplant risk factors, such as cardiovascular disease, chronic rejection, etc., which are all common complications after transplant. Accurate prediction of these risk scores remains a significant challenge. In this study, we used predictive models to solve the above challenges. Specifically, we proposed a deep learning model to predict multiple risk factors after a liver transplant. By formulating it as a multi-task learning problem, the proposed deep neural network was trained to simultaneously predict the five post-transplant risks and achieve equally good performance by exploiting task-balancing techniques. We also proposed a novel fairness-achieving algorithm to ensure prediction fairness across different subpopulations. We used electronic health records of 160,360 liver transplant patients, including demographic information, clinical variables, and laboratory values, collected from the liver transplant records of the United States from 1987 to 2018. The model's performance was evaluated using various performance metrics such as AUROC and AUPRC. Our experiment results highlighted the success of our multi-task model in achieving task balance while maintaining accuracy. The model significantly reduced the task discrepancy by 39%. Further application of the fairness-achieving algorithm substantially reduced fairness disparity among all sensitive attributes (gender, age group, and race/ethnicity) in each risk factor. It underlined the potency of integrating fairness considerations into the task-balancing framework, ensuring robust and fair predictions across multiple tasks and diverse demographic groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子味的邱憨憨完成签到 ,获得积分10
4秒前
科研01应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
13秒前
科研01应助科研通管家采纳,获得10
13秒前
易川完成签到,获得积分10
24秒前
marco完成签到,获得积分10
29秒前
37秒前
可靠的寒风完成签到,获得积分10
45秒前
59秒前
1分钟前
5160完成签到,获得积分10
1分钟前
欢喜新瑶发布了新的文献求助10
1分钟前
苏梗完成签到 ,获得积分10
1分钟前
小泉完成签到 ,获得积分10
1分钟前
binyao2024完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
搜集达人应助欢喜新瑶采纳,获得10
2分钟前
zzc发布了新的文献求助10
3分钟前
Bruna发布了新的文献求助10
3分钟前
星辰大海应助阿皮采纳,获得10
3分钟前
3分钟前
在水一方应助zzc采纳,获得10
3分钟前
3分钟前
木马上市完成签到,获得积分10
3分钟前
阿皮发布了新的文献求助10
3分钟前
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
科研01应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
国色不染尘完成签到,获得积分10
4分钟前
5分钟前
Phd侯发布了新的文献求助10
5分钟前
Phd侯完成签到,获得积分20
5分钟前
6分钟前
科研01应助科研通管家采纳,获得10
6分钟前
sutharsons应助科研通管家采纳,获得80
6分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3913910
求助须知:如何正确求助?哪些是违规求助? 3458973
关于积分的说明 10903694
捐赠科研通 3185643
什么是DOI,文献DOI怎么找? 1760892
邀请新用户注册赠送积分活动 851821
科研通“疑难数据库(出版商)”最低求助积分说明 792968