Multi-task Graph Neural Network for Optimizing the Structure Fairness

计算机科学 节点(物理) 人工神经网络 图形 理论计算机科学 数据挖掘 人工智能 结构工程 工程类
作者
Jiahui Wang,Meng Li,Fangshu Chen,Xiankai Meng,Chengcheng Yu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 347-362
标识
DOI:10.1007/978-3-031-39821-6_29
摘要

Graph neural networks, the mainstream paradigm of graph data mining, optimize the traditional feature-based node classification models with supplementing spatial topology. However, those isolated nodes not well connected to the whole graph are difficult to capture effective information through structural aggregation and sometimes even bring the negative local over-smoothing phenomenon, which is called structure fairness problem. To the best of our knowledge, current methods mainly focus on amending the network structure to improve the expressiveness with absence of the influence of the isolated parts. To facilitate this line of research, we innovatively propose a Multi-task Graph Neural Network for Optimizing the Structure Fairness (GNN-OSF). In GNN-OSF, nodes set is divided into diverse positions with a comprehensive investigation of the correlation between node position and accuracy in global topology. Besides, the link matrix is constructed to express the consistency of node labels, which expects isolated nodes to learn the same embedding and label when nodes share similar features. Afterward, the GNN-OSF network structure is explored by introducing the auxiliary link prediction task, where the task-shared and task-specific layer of diverse tasks are integrated with the auto-encoder architecture. Our comprehensive experiments demonstrate that GNN-OSF achieves superior node classification performance on both public benchmark and real-world industrial datasets, which effectively alleviates the structure unfairness of the isolated parts and leverages off-the -shelf models with the interaction of auxiliary tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Ethanyoyo0917采纳,获得10
1秒前
Orange应助sss采纳,获得150
1秒前
99发布了新的文献求助10
2秒前
愉快的隶完成签到,获得积分10
3秒前
Anan完成签到,获得积分10
3秒前
124完成签到 ,获得积分10
5秒前
wsh完成签到 ,获得积分10
5秒前
DQ完成签到,获得积分10
7秒前
iNk应助Rgly采纳,获得20
7秒前
唐妮完成签到,获得积分10
8秒前
果蝇宝宝完成签到,获得积分10
9秒前
dai完成签到,获得积分10
9秒前
9秒前
寻寻觅觅冷冷清清完成签到,获得积分10
9秒前
小朱完成签到,获得积分10
10秒前
12秒前
魁梧的冰菱完成签到,获得积分10
13秒前
年轻火车完成签到,获得积分10
13秒前
ZH完成签到 ,获得积分10
14秒前
16秒前
古今奇观完成签到 ,获得积分10
17秒前
路冰完成签到,获得积分10
17秒前
酷波er应助儒雅的友瑶采纳,获得10
19秒前
小分队发布了新的文献求助10
20秒前
20秒前
20秒前
情怀应助细心蚂蚁采纳,获得10
21秒前
yaoyh_gc完成签到,获得积分10
25秒前
Zik完成签到 ,获得积分10
27秒前
科研通AI5应助feng采纳,获得10
27秒前
Ying完成签到,获得积分10
27秒前
28秒前
29秒前
licheng完成签到,获得积分10
29秒前
儒雅的友瑶完成签到,获得积分10
29秒前
29秒前
Ava应助英勇含烟采纳,获得10
32秒前
斯文败类应助小分队采纳,获得10
32秒前
32秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671619
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779523
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610158
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093