铅笔(光学)
矩阵铅笔
数学
特征向量
线性子空间
投影(关系代数)
秩(图论)
维数(图论)
奇异值
矩阵的特征分解
域代数上的
应用数学
奇异值分解
数学优化
算法
纯数学
组合数学
工程类
物理
机械工程
量子力学
作者
Michiel E. Hochstenbach,Christian Mehl,Bor Plestenjak
摘要
.Generalized eigenvalue problems involving a singular pencil may be very challenging to solve, both with respect to accuracy and efficiency. While Part I presented a rank-completing addition to a singular pencil, we now develop two alternative methods. The first technique is based on a projection onto subspaces with dimension equal to the normal rank of the pencil while the second approach exploits an augmented matrix pencil. The projection approach seems to be the most attractive version for generic singular pencils because of its efficiency, while the augmented pencil approach may be suitable for applications where a linear system with the augmented pencil can be solved efficiently.Keywordssingular pencilsingular generalized eigenvalue problemprojection of normal rankperturbation theoryrectangular pencildouble eigenvaluesaugmented matrixbordered matrixconstrained eigenvalue problemMSC codes65F1565F5015A1815A2215A2147A5565F22
科研通智能强力驱动
Strongly Powered by AbleSci AI