亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of the Correlation and Prognostic Significance of Tertiary Lymphoid Structures in Breast Cancer: A Radiomics‐Clinical Integration Approach

列线图 医学 接收机工作特性 乳腺癌 无线电技术 回顾性队列研究 逻辑回归 肿瘤科 生存分析 Lasso(编程语言) 放射科 内科学 癌症 计算机科学 万维网
作者
Kezhen Li,Juan Ji,Simin Li,Man Yang,Yurou Che,Xu Zhu,Yiyao Zhang,Mei Wang,Zengyi Fang,Liping Luo,Chuan Wu,Xin Lai,Juan Dong,Xinlan Zhang,Na Zhao,Yang Liu,Weidong Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (4): 1206-1217 被引量:15
标识
DOI:10.1002/jmri.28900
摘要

Background Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. Purpose To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. Study Type Retrospective. Population Two hundred forty‐two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC − TLS group (N = 120). Field Strength/Sequence 3.0T; Caipirinha‐Dixon‐TWIST‐volume interpolated breath‐hold sequence for dynamic contrast‐enhanced (DCE) MRI and inversion‐recovery turbo spin echo sequence for T2‐weighted imaging (T2WI). Assessment Three models for differentiating BC + TLS and BC − TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis‐free survival (DMFS), and disease‐free survival (DFS) were compared to evaluate the prognostic value of TLSs. Statistical Tests LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan–Meier method was used to calculate the survival rate. Results The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow‐up time was 52 months. While there was no significant difference in 3‐year OS ( P = 0.22) between BC + TLS and BC − TLS patients, there were significant differences in 3‐year DFS and 3‐year DMFS between the two groups. Data Conclusion The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long‐term disease control rates and better prognoses than those without TLS. Evidence Level 2 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
histamin完成签到,获得积分10
3秒前
jojo完成签到 ,获得积分10
15秒前
Akim应助NEKO采纳,获得10
17秒前
mhy完成签到 ,获得积分10
17秒前
寻道图强完成签到,获得积分0
33秒前
56秒前
58秒前
1分钟前
NEKO发布了新的文献求助10
1分钟前
1分钟前
麦子完成签到 ,获得积分10
1分钟前
QQ农场提示我菜死了完成签到,获得积分10
1分钟前
1分钟前
mmyhn应助科研通管家采纳,获得20
1分钟前
所所应助NEKO采纳,获得10
1分钟前
领导范儿应助江洋大盗采纳,获得10
1分钟前
1分钟前
江洋大盗发布了新的文献求助10
1分钟前
香蕉觅云应助迷途小书童采纳,获得10
1分钟前
方沅完成签到,获得积分10
1分钟前
1分钟前
NEKO发布了新的文献求助10
2分钟前
清新的夏烟完成签到 ,获得积分10
2分钟前
子豪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
刘烨完成签到 ,获得积分10
2分钟前
2分钟前
正直的爆米花完成签到 ,获得积分10
3分钟前
Akim应助开拖拉机的芍药采纳,获得10
3分钟前
渥鸡蛋发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
jasmine完成签到,获得积分10
3分钟前
bastien完成签到,获得积分10
3分钟前
4分钟前
大模型应助NEKO采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603300
求助须知:如何正确求助?哪些是违规求助? 4688366
关于积分的说明 14853414
捐赠科研通 4689412
什么是DOI,文献DOI怎么找? 2540611
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471608