Improving prognosis and assessing adjuvant chemotherapy benefit in locally advanced rectal cancer with deep learning for MRI: A retrospective, multi-cohort study

医学 旁侵犯 结直肠癌 队列 回顾性队列研究 佐剂 肿瘤科 化疗 癌症 比例危险模型 内科学 外科
作者
Song Zhang,Guoxiang Cai,Peiyi Xie,Caixia Sun,Bao Li,Weixing Dai,Xiangyu Liu,Qi Qiu,Yang Du,Zhenhui Li,Zhenyu Liu,Jie Tian
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:188: 109899-109899 被引量:4
标识
DOI:10.1016/j.radonc.2023.109899
摘要

Adjuvant therapy is recommended to minimize the risk of distant metastasis (DM) and local recurrence (LR) in patients with locally advanced rectal cancer (LARC). However, its role is controversial. We aimed to develop a pretreatment MRI-based deep learning model to predict LR, DM, and overall survival (OS) over 5 years after surgery and to identify patients benefitting from adjuvant chemotherapy (AC).The multi-survival tasks network (MuST) model was developed in a primary cohort (n = 308) and validated using two external cohorts (n = 247, 245). An AC decision tree integrating the MuST-DM score, perineural invasion (PNI), and preoperative carbohydrate antigen 19-9 (CA19-9) was constructed to assess chemotherapy benefits and aid personalized treatment of patients. We also quantified the prognostic improvement of the decision tree.The MuST network demonstrated high prognostic accuracy in the primary and two external cohorts for the prediction of three different survival tasks. Within the stratified analysis and decision tree, patients with CA19-9 levels > 37 U/mL and high MuST-DM scores exhibited favorable chemotherapy efficacy. Similar results were observed in PNI-positive patients with low MuST-DM scores. PNI-negative patients with low MuST-DM scores exhibited poor chemotherapy efficacy. Based on the decision tree, 14 additional patients benefiting from AC and 391 patients who received over-treatment were identified in this retrospective study.The MuST model accurately and non-invasively predicted OS, DM, and LR. A specific and direct tool linking chemotherapy decisions and benefit quantification has also been provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜WIFI发布了新的文献求助10
2秒前
慧慧完成签到,获得积分10
2秒前
orixero应助常弦采纳,获得10
2秒前
zombleq发布了新的文献求助10
3秒前
3秒前
快乐姒发布了新的文献求助10
4秒前
4秒前
5秒前
文艺的乌龟完成签到,获得积分10
5秒前
天天发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
高挑的雨完成签到,获得积分10
8秒前
yyy完成签到,获得积分10
8秒前
大白熊完成签到 ,获得积分10
8秒前
8秒前
袁筱筱筱筱完成签到,获得积分10
8秒前
明钰发布了新的文献求助10
8秒前
10秒前
10秒前
hy发布了新的文献求助10
10秒前
maybe发布了新的文献求助10
11秒前
orixero应助光亮外套采纳,获得10
11秒前
Glorious完成签到,获得积分10
12秒前
领导范儿应助lucky采纳,获得10
13秒前
Sandwich发布了新的文献求助10
15秒前
77要减肥完成签到 ,获得积分10
18秒前
OLAY完成签到,获得积分10
19秒前
yyy发布了新的文献求助10
19秒前
peterlee完成签到,获得积分10
20秒前
六步郎完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
傲娇老五完成签到 ,获得积分10
21秒前
TingtingGZ发布了新的文献求助10
23秒前
xxx发布了新的文献求助20
23秒前
田様应助weddcf采纳,获得10
25秒前
完美世界应助liuyi666采纳,获得10
26秒前
yuan完成签到 ,获得积分10
29秒前
007完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407027
求助须知:如何正确求助?哪些是违规求助? 4524685
关于积分的说明 14099897
捐赠科研通 4438552
什么是DOI,文献DOI怎么找? 2436342
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406406