Improving prognosis and assessing adjuvant chemotherapy benefit in locally advanced rectal cancer with deep learning for MRI: A retrospective, multi-cohort study

医学 旁侵犯 结直肠癌 队列 回顾性队列研究 佐剂 肿瘤科 化疗 癌症 比例危险模型 内科学 外科
作者
Song Zhang,Guoxiang Cai,Peiyi Xie,Caixia Sun,Bao Li,Weixing Dai,Xiangyu Liu,Qi Qiu,Yang Du,Zhenhui Li,Zhenyu Liu,Jie Tian
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:188: 109899-109899 被引量:1
标识
DOI:10.1016/j.radonc.2023.109899
摘要

Adjuvant therapy is recommended to minimize the risk of distant metastasis (DM) and local recurrence (LR) in patients with locally advanced rectal cancer (LARC). However, its role is controversial. We aimed to develop a pretreatment MRI-based deep learning model to predict LR, DM, and overall survival (OS) over 5 years after surgery and to identify patients benefitting from adjuvant chemotherapy (AC).The multi-survival tasks network (MuST) model was developed in a primary cohort (n = 308) and validated using two external cohorts (n = 247, 245). An AC decision tree integrating the MuST-DM score, perineural invasion (PNI), and preoperative carbohydrate antigen 19-9 (CA19-9) was constructed to assess chemotherapy benefits and aid personalized treatment of patients. We also quantified the prognostic improvement of the decision tree.The MuST network demonstrated high prognostic accuracy in the primary and two external cohorts for the prediction of three different survival tasks. Within the stratified analysis and decision tree, patients with CA19-9 levels > 37 U/mL and high MuST-DM scores exhibited favorable chemotherapy efficacy. Similar results were observed in PNI-positive patients with low MuST-DM scores. PNI-negative patients with low MuST-DM scores exhibited poor chemotherapy efficacy. Based on the decision tree, 14 additional patients benefiting from AC and 391 patients who received over-treatment were identified in this retrospective study.The MuST model accurately and non-invasively predicted OS, DM, and LR. A specific and direct tool linking chemotherapy decisions and benefit quantification has also been provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助Ashely采纳,获得10
1秒前
雨巷完成签到,获得积分10
2秒前
研友_n0kjPL完成签到,获得积分0
3秒前
慕青应助elever11采纳,获得10
7秒前
丘比特应助直率的花生采纳,获得10
8秒前
8秒前
平平无奇小垃圾完成签到,获得积分20
11秒前
13秒前
14秒前
Ashely发布了新的文献求助10
14秒前
nenoaowu发布了新的文献求助10
16秒前
七QI完成签到 ,获得积分10
16秒前
Mr.Bad关注了科研通微信公众号
19秒前
19秒前
19秒前
ss应助jianning采纳,获得10
21秒前
21秒前
薛乎虚完成签到 ,获得积分10
22秒前
cdercder应助nenoaowu采纳,获得10
24秒前
Orange应助www采纳,获得10
25秒前
脑洞疼应助Ricky采纳,获得10
25秒前
独特的尔风完成签到,获得积分10
29秒前
汉堡包应助柔之采纳,获得10
31秒前
Ashely完成签到,获得积分10
31秒前
Robin完成签到,获得积分10
32秒前
达克赛德完成签到 ,获得积分10
34秒前
酷波er应助forge采纳,获得10
34秒前
罗实完成签到 ,获得积分10
35秒前
37秒前
怕黑向秋完成签到,获得积分10
38秒前
Robin发布了新的文献求助10
41秒前
smin完成签到,获得积分10
41秒前
NexusExplorer应助无心的土豆采纳,获得10
43秒前
44秒前
44秒前
科研通AI5应助小天采纳,获得10
44秒前
49秒前
forge发布了新的文献求助10
51秒前
51秒前
huangJP完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415