Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis

医学 无线电技术 肝细胞癌 荟萃分析 放射科 肿瘤科 内科学 人工智能 计算机科学
作者
Jin Jin,Ying Jiang,Yulan Zhao,Pintong Huang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (2): 467-479 被引量:31
标识
DOI:10.1016/j.acra.2023.09.008
摘要

Rationale and Objectives

Recurrence of hepatocellular carcinoma (HCC) is a major concern in its management. Accurately predicting the risk of recurrence is crucial for determining appropriate treatment strategies and improving patient outcomes. A certain amount of radiomics models for HCC recurrence prediction have been proposed. This study aimed to assess the role of radiomics models in the prediction of HCC recurrence and to evaluate their methodological quality.

Materials and Methods

Databases Cochrane Library, Web of Science, PubMed, and Embase were searched until July 11, 2023 for studies eligible for the meta-analysis. Their methodological quality was evaluated using the Radiomics Quality Score (RQS). The predictive ability of the radiomics model, clinical model, and the combined model integrating the clinical characteristics with radiomics signatures was measured using the concordance index (C-index), sensitivity, and specificity. Radiomics models in included studies were compared based on different imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound/sonography (US), contrast-enhanced ultrasound (CEUS).

Results

A total of 49 studies were included. On the validation cohort, radiomics model performed better (CT: C-index = 0.747, 95% CI: 0.70–0.79; MRI: C-index = 0.788, 95% CI: 0.75–0.83; CEUS: C-index = 0.763, 95% CI: 0.60–0.93) compared to the clinical model (C-index = 0.671, 95% CI: 0.65–0.70), except for ultrasound-based models (C-index = 0.560, 95% CI: 0.53–0.59). The combined model outperformed other models (CT: C-index = 0.790, 95% CI: 0.76–0.82; MRI: C-index = 0.826, 95% CI: 0.79–0.86; US: C-index = 0.760, 95% CI: 0.65–0.87), except for CEUS-based combined models (C-index = 0.707, 95% CI: 0.44–0.97).

Conclusion

Radiomics holds the potential to predict HCC recurrence and demonstrates enhanced predictive value across various imaging modalities when integrated with clinical features. Nevertheless, further studies are needed to optimize the radiomics approach and validate the results in larger, multi-center cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mayanting发布了新的文献求助10
1秒前
香蕉觅云应助Livrik采纳,获得10
1秒前
2秒前
wyy完成签到,获得积分10
2秒前
赛赛发布了新的文献求助10
2秒前
CHEN发布了新的文献求助10
2秒前
皓沐风完成签到,获得积分10
3秒前
Jasper应助乐乐采纳,获得10
3秒前
大模型应助伯喈采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
初衷未央完成签到,获得积分10
5秒前
wanci应助tree采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
萧萧落木天完成签到,获得积分10
8秒前
贪玩的访风完成签到 ,获得积分10
8秒前
10秒前
10秒前
完美的听芹完成签到,获得积分10
11秒前
科研通AI6应助犹犹豫豫采纳,获得10
11秒前
12秒前
12秒前
星辰大海应助F-超哥采纳,获得10
12秒前
14秒前
小胡先森给小胡先森的求助进行了留言
14秒前
CHEN完成签到,获得积分10
14秒前
木冉完成签到 ,获得积分10
15秒前
15秒前
梧桐发布了新的文献求助10
15秒前
竹筒发布了新的文献求助10
16秒前
赛赛完成签到,获得积分10
16秒前
16秒前
16秒前
clock完成签到 ,获得积分10
17秒前
酸奶不吃鱼完成签到 ,获得积分10
17秒前
勤劳怜寒完成签到,获得积分10
18秒前
zxd1999完成签到,获得积分10
19秒前
管弦乐完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660366
求助须知:如何正确求助?哪些是违规求助? 4833486
关于积分的说明 15090434
捐赠科研通 4819032
什么是DOI,文献DOI怎么找? 2578985
邀请新用户注册赠送积分活动 1533542
关于科研通互助平台的介绍 1492262