Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis

医学 无线电技术 肝细胞癌 荟萃分析 放射科 肿瘤科 内科学 人工智能 计算机科学
作者
Jin Jin,Ying Jiang,Yulan Zhao,Pintong Huang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 467-479 被引量:13
标识
DOI:10.1016/j.acra.2023.09.008
摘要

Rationale and Objectives

Recurrence of hepatocellular carcinoma (HCC) is a major concern in its management. Accurately predicting the risk of recurrence is crucial for determining appropriate treatment strategies and improving patient outcomes. A certain amount of radiomics models for HCC recurrence prediction have been proposed. This study aimed to assess the role of radiomics models in the prediction of HCC recurrence and to evaluate their methodological quality.

Materials and Methods

Databases Cochrane Library, Web of Science, PubMed, and Embase were searched until July 11, 2023 for studies eligible for the meta-analysis. Their methodological quality was evaluated using the Radiomics Quality Score (RQS). The predictive ability of the radiomics model, clinical model, and the combined model integrating the clinical characteristics with radiomics signatures was measured using the concordance index (C-index), sensitivity, and specificity. Radiomics models in included studies were compared based on different imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound/sonography (US), contrast-enhanced ultrasound (CEUS).

Results

A total of 49 studies were included. On the validation cohort, radiomics model performed better (CT: C-index = 0.747, 95% CI: 0.70–0.79; MRI: C-index = 0.788, 95% CI: 0.75–0.83; CEUS: C-index = 0.763, 95% CI: 0.60–0.93) compared to the clinical model (C-index = 0.671, 95% CI: 0.65–0.70), except for ultrasound-based models (C-index = 0.560, 95% CI: 0.53–0.59). The combined model outperformed other models (CT: C-index = 0.790, 95% CI: 0.76–0.82; MRI: C-index = 0.826, 95% CI: 0.79–0.86; US: C-index = 0.760, 95% CI: 0.65–0.87), except for CEUS-based combined models (C-index = 0.707, 95% CI: 0.44–0.97).

Conclusion

Radiomics holds the potential to predict HCC recurrence and demonstrates enhanced predictive value across various imaging modalities when integrated with clinical features. Nevertheless, further studies are needed to optimize the radiomics approach and validate the results in larger, multi-center cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiayu完成签到 ,获得积分0
3秒前
黎明完成签到,获得积分10
3秒前
xiaoguai完成签到 ,获得积分10
7秒前
阿曼尼完成签到 ,获得积分10
9秒前
大维C完成签到,获得积分10
10秒前
忐忑的天真完成签到 ,获得积分10
10秒前
孤鸿影98完成签到 ,获得积分10
11秒前
霍师傅发布了新的文献求助10
13秒前
黄少侠完成签到 ,获得积分0
14秒前
yuchen完成签到,获得积分10
15秒前
16秒前
17秒前
wubobo完成签到,获得积分10
18秒前
碳火涮羊肉完成签到,获得积分10
21秒前
cccr02发布了新的文献求助10
21秒前
22秒前
22秒前
沙里飞完成签到 ,获得积分10
24秒前
乙醇发布了新的文献求助10
25秒前
26秒前
风流难误我完成签到,获得积分10
27秒前
28秒前
Lemenchichi完成签到,获得积分10
29秒前
lifeng发布了新的文献求助10
29秒前
仓颉发布了新的文献求助10
29秒前
30秒前
30秒前
31秒前
老实皮卡丘完成签到 ,获得积分10
32秒前
33秒前
34秒前
高高的茹妖完成签到,获得积分20
34秒前
沉静的小熊猫完成签到,获得积分10
34秒前
dddd发布了新的文献求助30
35秒前
郝君颖完成签到,获得积分10
35秒前
十二发布了新的文献求助10
35秒前
36秒前
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522