TMSDNet: Transformer with multi‐scale dense network for single and multi‐view 3D reconstruction

计算机科学 体素 变压器 人工智能 编码器 残余物 三维重建 模式识别(心理学) 特征提取 计算机视觉 算法 量子力学 操作系统 物理 电压
作者
Xiaoqiang Zhu,Xinsheng Yao,Junjie Zhang,Mengyao Zhu,Lihua You,Xiaosong Yang,Jianjun Zhang,He Zhao,Dan Zeng
出处
期刊:Computer Animation and Virtual Worlds [Wiley]
卷期号:35 (1) 被引量:17
标识
DOI:10.1002/cav.2201
摘要

Abstract 3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches have demonstrated strong performance. However, transformer‐based 3D reconstruction methods tend to establish the transformation relationship between the 2D image and the 3D voxel space directly using transformers or rely solely on the powerful feature extraction capabilities of transformers. They ignore the crucial role played by deep multi‐scale representation of the object in the voxel feature domain, which can provide extensive global shape and local detail information about the object in a multi‐scale manner. In this article, we propose a novel framework TMSDNet (transformer with multi‐scale dense network) for single‐view and multi‐view 3D reconstruction with transformer to solve this problem. Based on our well‐designed combined‐transformer Block, which is canonical encoder–decoder architecture, voxel features with spatial order can be extracted from the input image, which are used to further extract multi‐scale global features in parallel using a multi‐scale residual attention module. Furthermore, a residual dense attention block is introduced for deep local features extraction and adaptive fusion. Finally, the reconstructed objects are produced with the voxel reconstruction block. Experiment results on the benchmarks such as ShapeNet and Pix3D datasets demonstrate that TMSDNet outperforms the existing state‐of‐the‐art reconstruction methods substantially.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
distant发布了新的文献求助10
1秒前
qiuyang完成签到,获得积分10
1秒前
1秒前
英姑应助顺心从霜采纳,获得10
1秒前
小马甲应助韩梦采纳,获得10
1秒前
佰斯特威应助LMH采纳,获得10
1秒前
daixan89发布了新的文献求助100
2秒前
2秒前
JOKER完成签到,获得积分10
3秒前
3秒前
4秒前
ccalvintan完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
英姑应助qiuyang采纳,获得10
5秒前
5秒前
Lucas应助云深不知处采纳,获得10
6秒前
6秒前
王世杰完成签到 ,获得积分10
7秒前
7秒前
orixero应助ty1996采纳,获得10
7秒前
孙兴燕发布了新的文献求助10
7秒前
8秒前
8秒前
小铃铛发布了新的文献求助10
9秒前
脑洞疼应助小Z采纳,获得30
9秒前
XIU发布了新的文献求助10
9秒前
CuO关闭了CuO文献求助
9秒前
熊健钧发布了新的文献求助10
9秒前
fufu完成签到,获得积分10
10秒前
11秒前
黎音完成签到 ,获得积分10
11秒前
11秒前
泯珉发布了新的文献求助30
11秒前
12秒前
able完成签到,获得积分10
13秒前
13秒前
13秒前
孙兴燕完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4665285
求助须知:如何正确求助?哪些是违规求助? 4046457
关于积分的说明 12515896
捐赠科研通 3738986
什么是DOI,文献DOI怎么找? 2064970
邀请新用户注册赠送积分活动 1094476
科研通“疑难数据库(出版商)”最低求助积分说明 974883