A Longitudinal MRI-Based Artificial Intelligence System to Predict Pathological Complete Response After Neoadjuvant Therapy in Rectal Cancer: A Multicenter Validation Study

医学 新辅助治疗 结直肠癌 外科肿瘤学 完全响应 病态的 结直肠外科 放射科 肿瘤科 内科学 癌症 化疗 腹部外科 乳腺癌
作者
Jia Ke,Cheng Jin,Jinghua Tang,Haimei Cao,Songbing He,Peirong Ding,Xiaofeng Jiang,Hengyu Zhao,Wuteng Cao,Xiaochun Meng,Feng Gao,Ping Lan,Ruijiang Li,Xiaojian Wu
出处
期刊:Diseases of The Colon & Rectum [Lippincott Williams & Wilkins]
被引量:7
标识
DOI:10.1097/dcr.0000000000002931
摘要

BACKGROUND: Accurate prediction of response to neoadjuvant chemoradiotherapy is critical for subsequent treatment decisions for patients with locally advanced rectal cancer. OBJECTIVE: To develop and validate a deep learning model that based on the comparison of paired magnetic resonance imaging before and after neoadjuvant chemoradiotherapy to predict pathological complete response. DESIGN: By capturing the changes from magnetic resonance images before and after neoadjuvant chemoradiotherapy in 638 patients, we trained a multitask deep learning model for response prediction (DeepRP-RC) that also allowed simultaneous segmentation. Its performance was independently tested in an internal and three external validation sets, and its prognostic value was also evaluated. SETTINGS: Multicenter study. PATIENTS: We retrospectively rerolled 1201 patients diagnosed with locally advanced rectal cancer and undergoing neoadjuvant chemoradiotherapy prior to total mesorectal excision. They were from four hospitals in China between January 2013 and December 2020. MAIN OUTCOME MEASURES: The main outcomes were accuracy of predicting pathological complete response, measured as the area under receiver operating curve for the training and validation data sets. RESULTS: DeepRP-RC achieved high performance in predicting pathological complete response after neoadjuvant chemoradiotherapy, with area under curve values of 0.969 (0.942-0.996), 0.946 (0.915-0.977), 0.943 (0.888-0.998), and 0.919 (0.840-0.997) for the internal and 3 external validation sets, respectively. DeepRP-RC performed similarly well in the subgroups defined by receipt of radiotherapy, tumor location, T/N stages before and after neoadjuvant chemoradiotherapy, and age. Compared with experienced radiologists, the model showed substantially higher performance in pathological complete response prediction. The model was also highly accurate in identifying the patients with poor response. Further, the model was significantly associated with disease-free survival independent of clinicopathologic variables. LIMITATIONS: This study was limited by retrospective design and absence of multi-ethnic data. CONCLUSIONS: DeepRP-RC could serve as an accurate preoperative tool for pathological complete response prediction in rectal cancer after neoadjuvant chemoradiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王恒完成签到,获得积分10
1秒前
由由完成签到 ,获得积分10
3秒前
稳重奇异果应助jialin采纳,获得10
6秒前
春眠不觉小小酥完成签到,获得积分10
10秒前
12秒前
djbj2022发布了新的文献求助10
13秒前
Lucifer完成签到,获得积分10
13秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
子车茗应助科研通管家采纳,获得30
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
子车茗应助科研通管家采纳,获得30
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
蛋卷儿应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
三千世界完成签到,获得积分10
17秒前
fransiccarey完成签到,获得积分10
20秒前
fo_shuo完成签到,获得积分10
21秒前
22秒前
26秒前
刘胖胖发布了新的文献求助10
28秒前
30秒前
ll关闭了ll文献求助
31秒前
科研通AI5应助Ni采纳,获得10
31秒前
Chihiro完成签到 ,获得积分10
32秒前
阿尔卑斯完成签到,获得积分10
33秒前
Qiuyajing完成签到,获得积分10
34秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339