A Longitudinal MRI-Based Artificial Intelligence System to Predict Pathological Complete Response After Neoadjuvant Therapy in Rectal Cancer: A Multicenter Validation Study

医学 新辅助治疗 结直肠癌 外科肿瘤学 完全响应 病态的 结直肠外科 放射科 肿瘤科 内科学 癌症 化疗 腹部外科 乳腺癌
作者
Jia Ke,Cheng Jin,Jinghua Tang,Haimei Cao,Songbing He,Peirong Ding,Xiaofeng Jiang,Hengyu Zhao,Wuteng Cao,Xiaochun Meng,Feng Gao,Ping Lan,Ruijiang Li,Xiaojian Wu
出处
期刊:Diseases of The Colon & Rectum [Lippincott Williams & Wilkins]
被引量:7
标识
DOI:10.1097/dcr.0000000000002931
摘要

BACKGROUND: Accurate prediction of response to neoadjuvant chemoradiotherapy is critical for subsequent treatment decisions for patients with locally advanced rectal cancer. OBJECTIVE: To develop and validate a deep learning model that based on the comparison of paired magnetic resonance imaging before and after neoadjuvant chemoradiotherapy to predict pathological complete response. DESIGN: By capturing the changes from magnetic resonance images before and after neoadjuvant chemoradiotherapy in 638 patients, we trained a multitask deep learning model for response prediction (DeepRP-RC) that also allowed simultaneous segmentation. Its performance was independently tested in an internal and three external validation sets, and its prognostic value was also evaluated. SETTINGS: Multicenter study. PATIENTS: We retrospectively rerolled 1201 patients diagnosed with locally advanced rectal cancer and undergoing neoadjuvant chemoradiotherapy prior to total mesorectal excision. They were from four hospitals in China between January 2013 and December 2020. MAIN OUTCOME MEASURES: The main outcomes were accuracy of predicting pathological complete response, measured as the area under receiver operating curve for the training and validation data sets. RESULTS: DeepRP-RC achieved high performance in predicting pathological complete response after neoadjuvant chemoradiotherapy, with area under curve values of 0.969 (0.942-0.996), 0.946 (0.915-0.977), 0.943 (0.888-0.998), and 0.919 (0.840-0.997) for the internal and 3 external validation sets, respectively. DeepRP-RC performed similarly well in the subgroups defined by receipt of radiotherapy, tumor location, T/N stages before and after neoadjuvant chemoradiotherapy, and age. Compared with experienced radiologists, the model showed substantially higher performance in pathological complete response prediction. The model was also highly accurate in identifying the patients with poor response. Further, the model was significantly associated with disease-free survival independent of clinicopathologic variables. LIMITATIONS: This study was limited by retrospective design and absence of multi-ethnic data. CONCLUSIONS: DeepRP-RC could serve as an accurate preoperative tool for pathological complete response prediction in rectal cancer after neoadjuvant chemoradiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助白衣修身采纳,获得10
1秒前
1秒前
李健的小迷弟应助小智采纳,获得10
2秒前
小猪发布了新的文献求助10
2秒前
搜集达人应助义气莫茗采纳,获得10
3秒前
小羊小羊完成签到,获得积分10
3秒前
3秒前
guoyunlong完成签到,获得积分10
4秒前
Calvin发布了新的文献求助10
4秒前
慕青应助的呀呀采纳,获得10
5秒前
5秒前
欢乐城完成签到,获得积分10
5秒前
可爱的函函应助宇文天思采纳,获得10
5秒前
Alice完成签到,获得积分10
6秒前
核桃发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
爆米花应助Ronnie采纳,获得10
8秒前
8秒前
Tao发布了新的文献求助10
8秒前
泽锦臻完成签到,获得积分10
8秒前
ganyu59完成签到,获得积分10
8秒前
机智的诗兰完成签到,获得积分10
8秒前
CAI313完成签到,获得积分10
9秒前
wstkkkkykk完成签到,获得积分10
9秒前
阿佳发布了新的文献求助10
10秒前
Eurus发布了新的文献求助10
10秒前
yhj_0580发布了新的文献求助10
11秒前
12秒前
XX发布了新的文献求助10
12秒前
three发布了新的文献求助10
13秒前
义气莫茗发布了新的文献求助10
13秒前
可靠的薯片完成签到 ,获得积分10
14秒前
14秒前
SciGPT应助天真的冬寒采纳,获得10
14秒前
进击的研狗完成签到 ,获得积分10
14秒前
chris发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947472
求助须知:如何正确求助?哪些是违规求助? 3492741
关于积分的说明 11066427
捐赠科研通 3223582
什么是DOI,文献DOI怎么找? 1781591
邀请新用户注册赠送积分活动 866393
科研通“疑难数据库(出版商)”最低求助积分说明 800332