FRNet: Frequency-based Rotation Network for Long-term Time Series Forecasting

期限(时间) 系列(地层学) 计算机科学 时间序列 旋转(数学) 人工智能 机器学习 地质学 物理 古生物学 量子力学
作者
Xinyu Zhang,Shanshan Feng,Jianghong Ma,Huiwei Lin,Xutao Li,Yunming Ye,Fan Li,Yew-Soon Ong
标识
DOI:10.1145/3637528.3671713
摘要

Long-term time series forecasting (LTSF) aims to predict future values for a long time based on historical data. The period term is an essential component of the time series, which is complex yet important for LTSF. Although existing studies have achieved promising results, they still have limitations in modeling dynamic complicated periods. Most studies only focus on static periods with fixed time steps, while very few studies attempt to capture dynamic periods in the time domain. In this paper, we dissect the original time series in time and frequency domains and empirically find that changes in periods are more easily captured and quantified in the frequency domain. Based on this observation, we propose to explore dynamic period features using rotation in the frequency domain. To this end, we develop the frequency-based rotation network (FRNet), a novel LTSF method to effectively capture the features of the dynamic complicated periods. FRNet decomposes the original time series into period and trend components. Based on the complex-valued linear networks, it leverages a period frequency rotation module to predict the period component and a patch frequency rotation module to predict the trend component, respectively. Extensive experiments on seven real-world datasets consistently demonstrate the superiority of FRNet over various state-of-the-art methods. The source code is available at https://github.com/SiriZhang45/FRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悟樂完成签到,获得积分10
1秒前
1秒前
Jasper应助晨珂采纳,获得10
2秒前
hj发布了新的文献求助10
3秒前
3秒前
Liben完成签到,获得积分10
3秒前
4秒前
酷波er应助龙眼采纳,获得10
5秒前
gulugulu完成签到,获得积分10
6秒前
Arden完成签到,获得积分20
6秒前
Ava应助chenfu采纳,获得10
6秒前
科研通AI6应助晨晨晨采纳,获得10
6秒前
故意不上钩的鱼应助lll采纳,获得10
7秒前
旅人发布了新的文献求助10
7秒前
8秒前
8秒前
LI发布了新的文献求助10
9秒前
10秒前
在水一方应助sherman采纳,获得10
11秒前
12秒前
隐形曼青应助34101127采纳,获得10
12秒前
木子完成签到,获得积分10
13秒前
yzh发布了新的文献求助10
13秒前
14秒前
爆米花应助刘字绮采纳,获得30
14秒前
14秒前
若雪幽梦完成签到,获得积分10
14秒前
zkin完成签到 ,获得积分10
14秒前
15秒前
16秒前
南汉高贵的陈皮完成签到 ,获得积分10
18秒前
独角兽发布了新的文献求助10
18秒前
18秒前
Cino完成签到,获得积分10
19秒前
20秒前
21秒前
乐乐应助sin采纳,获得10
21秒前
顾矜应助辛勤的乌采纳,获得10
21秒前
11发布了新的文献求助10
21秒前
CL完成签到,获得积分10
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344089
求助须知:如何正确求助?哪些是违规求助? 4479449
关于积分的说明 13942876
捐赠科研通 4376498
什么是DOI,文献DOI怎么找? 2404811
邀请新用户注册赠送积分活动 1397185
关于科研通互助平台的介绍 1369514