亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of artificial intelligence in the materials science, with a special focus on fuel cells and electrolyzers

光学(聚焦) 燃料电池 计算机科学 工程类 人工智能 纳米技术 化学工程 材料科学 物理 光学
作者
Mariah Batool,Oluwafemi Sanumi,Jasna Janković
出处
期刊:Energy and AI [Elsevier]
卷期号:18: 100424-100424 被引量:48
标识
DOI:10.1016/j.egyai.2024.100424
摘要

Artificial Intelligence (AI) has revolutionized technological development globally, delivering relatively more accurate and reliable solutions to critical challenges across various research domains. This impact is particularly notable within the field of materials science and engineering, where artificial intelligence has catalyzed the discovery of new materials, enhanced design simulations, influenced process controls, and facilitated operational analysis and predictions of material properties and behaviors. Consequently, these advancements have streamlined the synthesis, simulation, and processing procedures, leading to material optimization for diverse applications. A key area of interest within materials science is the development of hydrogen-based electrochemical systems, such as fuel cells and electrolyzers, as clean energy solutions, known for their promising high energy density and zero-emission operations. While artificial intelligence shows great potential in studying both fuel cells and electrolyzers, existing literature often separates them, with a clear gap in comprehensive studies on electrolyzers despite their similarities. This review aims to bridge that gap by providing an integrated overview of artificial intelligence's role in both technologies. This review begins by explaining the fundamental concepts of artificial intelligence and introducing commonly used artificial intelligence-based algorithms in a simplified and clearly comprehensible way, establishing a foundational knowledge base for further discussion. Subsequently, it explores the role of artificial intelligence in materials science, highlighting the critical applications and drawing on examples from recent literature to build on the discussion. The paper then examines how artificial intelligence has propelled significant advancements in studying various types of fuel cells and electrolyzers, specifically emphasizing proton exchange membrane (PEM) based systems. It thoroughly explores the artificial intelligence tools and techniques for characterizing, manufacturing, testing, analyzing, and optimizing these systems. Additionally, the review critically evaluates the current research landscape, pinpointing progress and prevailing challenges. Through this thorough analysis, the review underscores the fundamental role of artificial intelligence in advancing the generation and utilization of clean energy, illustrating its transformative potential in this area of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
ceeray23应助科研通管家采纳,获得200
5秒前
ceeray23应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
追梦远行人完成签到 ,获得积分10
18秒前
Jay发布了新的文献求助30
45秒前
TYM发布了新的文献求助10
1分钟前
Jay关闭了Jay文献求助
1分钟前
星辰大海应助TYM采纳,获得10
1分钟前
1分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
科研通AI6应助明芬采纳,获得10
2分钟前
星辰大海应助谭代涛采纳,获得10
2分钟前
2分钟前
洛莉塔发布了新的文献求助10
2分钟前
洛莉塔完成签到,获得积分10
2分钟前
ding应助明芬采纳,获得10
2分钟前
mathmotive完成签到,获得积分10
3分钟前
3分钟前
3分钟前
谭代涛发布了新的文献求助10
3分钟前
英勇明雪完成签到 ,获得积分10
3分钟前
3分钟前
TYM发布了新的文献求助10
3分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
李健应助科研通管家采纳,获得10
4分钟前
今后应助TYM采纳,获得10
4分钟前
silence完成签到 ,获得积分10
4分钟前
明芬发布了新的文献求助10
4分钟前
4分钟前
Puan发布了新的文献求助10
4分钟前
Puan完成签到,获得积分10
4分钟前
蚂蚁牙黑完成签到 ,获得积分10
5分钟前
Jay发布了新的文献求助10
5分钟前
连安阳发布了新的文献求助350
5分钟前
5分钟前
七叶花开完成签到 ,获得积分10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
墨薄凉完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671325
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505547
关于科研通互助平台的介绍 1470945