The critical need for expert oversight of ChatGPT: Prompt engineering for safeguarding child healthcare information

可靠性 保护 医疗保健 心理学 主题专家 领域(数学分析) 可信赖性 透视图(图形) 应用心理学 知识管理 医学 计算机科学 专家系统 社会心理学 护理部 人工智能 数学分析 数学 经济 法学 政治学 经济增长
作者
Calissa J. Leslie‐Miller,Stacey L. Simon,Kelsey Dean,Nadine Mokhallati,Christopher C. Cushing
出处
期刊:Journal of Pediatric Psychology [Oxford University Press]
卷期号:49 (11): 812-817 被引量:1
标识
DOI:10.1093/jpepsy/jsae075
摘要

Abstract Objective ChatGPT and other large language models have the potential to transform the health information landscape online. However, lack of domain-specific expertise and known errors in large language models raise concerns about the widespread adoption of content generated by these tools for parents making healthcare decisions for their children. The aim of this study is to determine if health-related text generated by ChatGPT under the supervision of an expert is comparable to that generated by an expert regarding persuasiveness and credibility from the perspective of a parent. Methods In a cross-sectional study 116 parents aged 18–65 years (M = 45.02, SD = 10.92) were asked to complete a baseline assessment of their behavioral intentions regarding pediatric healthcare topics. Subsequently, participants were asked to rate text generated by either an expert or by ChatGPT under supervision of an expert. Results Results indicate that prompt engineered ChatGPT is capable of impacting behavioral intentions for medication, sleep, and diet decision-making. Additionally, there was little distinction between prompt engineered ChatGPT and content experts on perceived morality, trustworthiness, expertise, accuracy, and reliance. Notably, when differences were present, prompt engineered ChatGPT was rated as higher in trustworthiness and accuracy, and participants indicated they would be more likely to rely on the information presented by prompt engineered ChatGPT compared to the expert. Discussion Given that parents will trust and rely on information generated by ChatGPT, it is critically important that human domain-specific expertise be applied to healthcare information that will ultimately be presented to consumers (e.g., parents).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
云朵完成签到,获得积分10
1秒前
2秒前
秋半梦发布了新的文献求助10
2秒前
刘涵完成签到,获得积分10
3秒前
早岁完成签到,获得积分10
3秒前
爆米花应助李一菲采纳,获得10
3秒前
明理的帆布鞋应助小灰灰采纳,获得10
4秒前
xuruiwade1完成签到 ,获得积分10
4秒前
jianjian发布了新的文献求助10
5秒前
花生仔发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
曹坤完成签到,获得积分10
6秒前
北城完成签到,获得积分10
7秒前
微醺完成签到,获得积分10
8秒前
小二郎应助尊敬的毛豆采纳,获得10
8秒前
一路向北完成签到,获得积分10
9秒前
蔡蔡发布了新的文献求助10
11秒前
李健应助罗马采纳,获得10
11秒前
11秒前
正直的半梅完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
李一菲完成签到,获得积分10
14秒前
倪仕丽完成签到 ,获得积分10
15秒前
纯情蟑螂完成签到,获得积分10
15秒前
科研通AI5应助源缘采纳,获得10
15秒前
16秒前
sunjiayi发布了新的文献求助10
16秒前
六六完成签到,获得积分10
16秒前
所所应助之南采纳,获得10
16秒前
16秒前
刘涵完成签到,获得积分10
18秒前
秋半梦发布了新的文献求助10
18秒前
一路向北发布了新的文献求助10
18秒前
李一菲发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132185
求助须知:如何正确求助?哪些是违规求助? 4333666
关于积分的说明 13501674
捐赠科研通 4170698
什么是DOI,文献DOI怎么找? 2286593
邀请新用户注册赠送积分活动 1287479
关于科研通互助平台的介绍 1228414