The inversion of arid-coastal cultivated soil salinity using explainable machine learning and Sentinel-2

干旱 盐度 环境科学 土壤盐分 反演(地质) 海洋学 农林复合经营 生态学 地质学 生物 构造盆地 古生物学
作者
Pingping Jia,Junhua Zhang,Yanning Liang,Sheng Zhang,Keli Jia,Xiaoning Zhao
出处
期刊:Ecological Indicators [Elsevier]
卷期号:166: 112364-112364 被引量:17
标识
DOI:10.1016/j.ecolind.2024.112364
摘要

The escalating salinization of cultivated soil poses a significant threat to the ecological environment. It is imperative to establish a monitoring system and mitigate the spread of salinization in arid and coastal areas through remote sensing, incorporating high-precision cross-regional models for soil salt content inversion. This study focuses on typical saline-alkali soils in arid and coastal regions of China. Using Sentinel 2 data (including 6 bands and 27 spectral indices), along with soil texture, moisture content, temperature, precipitation, and digital elevation model (DEM) data to establish an arid-coastal salinity inversion model. Variable selection methods such as pearson correlation coefficient (PCC), variable importance in projection (VIP), gray relational analysis (GRA), and gradient boosting machine (GBM) were used, while using 9 models including adaptive boosting (Adaboost), extremely randomized trees (ERT), and light gradient boosting machine (LightGBM). The best model was further elucidated using the Shapley additive explanations method. Results indicate that the common sensitive characteristic variables of arid-coastal areas were spectral indices and soil properties in PCC, the spectral variable bands and indices in VIP, and all variables in GRA and GBM. The best inversion model GBM-ERT (R2 = 0.91, RMSE = 1.06) in arid areas exhibited higher accuracy than the best inversion model GBM-Adaboost (R2 = 0.77, RMSE = 1.74) in coastal areas. The arid-coastal inversion model PCC-LightGBM demonstrated the best inversion performance (R2 = 0.64, RMSE = 2.29) and simulation performance in arid (R2 = 0.67) and coastal areas (R2 = 0.63). Dead fuel index (DFI) had the most significant impact on model prediction (0.89) and the second ratio index (RI2) contributed the highest relative importance (18 %) to the model. Our analysis indicates that the arid-coastal model of PCC-LightGBM established using common characteristic variables, can effectively monitor large-scale soil salinity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YDX完成签到 ,获得积分10
刚刚
1秒前
花灯发布了新的文献求助10
3秒前
4秒前
所所应助薛寒香采纳,获得10
5秒前
吕洺旭应助芫荽采纳,获得10
6秒前
李子完成签到,获得积分10
6秒前
7秒前
冉123完成签到,获得积分10
7秒前
AllenHoo完成签到,获得积分20
7秒前
科目三应助yangpengbo采纳,获得10
9秒前
852应助无机盐采纳,获得10
9秒前
JamesPei应助ru采纳,获得10
10秒前
无问西东完成签到 ,获得积分10
10秒前
欢喜菠萝完成签到 ,获得积分10
10秒前
11秒前
11秒前
安详的寻菱完成签到 ,获得积分10
12秒前
斯文败类应助演化的蛙鱼采纳,获得10
13秒前
醉熏的伊发布了新的文献求助30
14秒前
腼腆的绿蕊完成签到,获得积分10
14秒前
酷炫的幻丝完成签到 ,获得积分10
14秒前
坚定若冰发布了新的文献求助10
14秒前
16秒前
前行者发布了新的文献求助10
16秒前
希望天下0贩的0应助qwq采纳,获得30
16秒前
16秒前
17秒前
18秒前
传奇3应助悲凉的孤萍采纳,获得10
20秒前
xiaocui发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
啦11发布了新的文献求助20
22秒前
ru发布了新的文献求助10
22秒前
22秒前
光亮语梦完成签到 ,获得积分10
22秒前
haha111发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599355
求助须知:如何正确求助?哪些是违规求助? 4684915
关于积分的说明 14837110
捐赠科研通 4667789
什么是DOI,文献DOI怎么找? 2537887
邀请新用户注册赠送积分活动 1505378
关于科研通互助平台的介绍 1470783