Label-Aware Dual Graph Neural Networks for Multi-Label Fundus Image Classification

计算机科学 人工智能 对偶(语法数字) 模式识别(心理学) 图形 上下文图像分类 人工神经网络 计算机视觉 图像(数学) 理论计算机科学 文学类 艺术
作者
Yanbei Liu,Xinwen Peng,Xin Wei,Lei Geng,Fang Zhang,Zhitao Xiao,Jerry Chun‐Wei Lin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/jbhi.2024.3457232
摘要

Fundus disease is a complex and universal disease involving a variety of pathologies. Its early diagnosis using fundus images can effectively prevent further diseases and provide targeted treatment plans for patients. Recent deep learning models for classification of this disease are gradually emerging as a critical research field, which is attracting widespread attention. However, in practice, most of the existing methods only focus on local visual cues of a single image, and ignore the underlying explicit interaction similarity between subjects and correlation information among pathologies in fundus diseases. In this paper, we propose a novel label-aware dual graph neural networks for multi-label fundus image classification that consists of population-based graph representation learning and pathology-based graph representation learning modules. Specifically, we first construct a population-based graph by integrating image features and non-image information to learn patient's representations by incorporating associations between subjects. Then, we represent pathologies as a sparse graph where its nodes are associated with pathology-based feature vectors and the edges correspond to probability of the co-occurrence of labels to generate a set of classifier scores by the propagation of multi-layer graph information. Finally, our model can adaptively recalibrate multi-label outputs. Detailed experiments and analysis of our results show the effectiveness of our method compared with state-of-the-art multi-label fundus image classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
Maxine完成签到 ,获得积分10
5秒前
Akim应助金桔儿采纳,获得10
5秒前
6秒前
7秒前
阿梅梅梅发布了新的文献求助10
7秒前
Vi完成签到,获得积分10
8秒前
123123发布了新的文献求助10
8秒前
9秒前
Asteria完成签到,获得积分10
9秒前
共行发布了新的文献求助10
10秒前
10秒前
研友_LpQGjn完成签到 ,获得积分10
12秒前
12秒前
西西2完成签到 ,获得积分10
13秒前
小菜鸡完成签到 ,获得积分10
13秒前
Ava应助清新的音响采纳,获得10
14秒前
柔之发布了新的文献求助10
14秒前
TIGun发布了新的文献求助10
17秒前
18秒前
18秒前
领导范儿应助123123采纳,获得10
19秒前
20秒前
20秒前
21秒前
BOB发布了新的文献求助10
25秒前
豌豆发布了新的文献求助10
26秒前
sunshine发布了新的文献求助10
26秒前
26秒前
27秒前
大个应助豌豆采纳,获得10
30秒前
yanna发布了新的文献求助10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得50
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366