AI-Based multimodal Multi-tasks analysis reveals tumor molecular heterogeneity, predicts preoperative lymph node metastasis and prognosis in papillary thyroid carcinoma: A retrospective study

医学 甲状腺癌 淋巴结转移 淋巴结 回顾性队列研究 转移 肿瘤科 甲状腺 放射科 普通外科 内科学 癌症
作者
Yunfang Yu,Wenhao Ouyang,Yunxi Huang,Hong Huang,Zehua Wang,Xueyuan Jia,Zhenjun Huang,Ruichong Lin,Yue Zhu,Yisitandaer yalikun,Langping Tan,Xi Li,Fei Zhao,Zhange Chen,Wenting Li,Jianwei Liao,Herui Yao,Miaoyun Long
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:5
标识
DOI:10.1097/js9.0000000000001875
摘要

Background: Papillary thyroid carcinoma (PTC) is the predominant form of thyroid cancer globally, especially when lymph node metastasis (LNM) occurs. Molecular heterogeneity, driven by genetic alterations and tumor microenvironment components, contributes to the complexity of PTC. Understanding these complexities is essential for precise risk stratification and therapeutic decisions. Methods: This study involved a comprehensive analysis of 521 patients with PTC from our hospital and 499 patients from The Cancer Genome Atlas (TCGA). The real-world cohort 1 comprised 256 patients with stage I–III PTC. Tissues from 252 patients were analyzed by DNA-based next-generation sequencing, and tissues from four patients were analyzed by single-cell RNA sequencing (scRNA-seq). Additionally, 586 PTC pathological sections were collected from TCGA, and 275 PTC pathological sections were collected from the real-world cohort 2. A deep learning multimodal model was developed using matched histopathology images, genomic, transcriptomic, and immune cell data to predict LNM and disease-free survival (DFS). Results: This study included a total of 1,011 PTC patients, comprising 256 patients from cohort 1, 275 patients from cohort 2, and 499 patients from TCGA. In cohort 1, we categorized PTC into four molecular subtypes based on BRAF, RAS, RET, and other mutations. BRAF mutations were significantly associated with LNM and impacted DFS. ScRNA-seq identified distinct T cell subtypes and reduced B cell diversity in BRAF-mutated PTC with LNM. The study also explored cancer-associated fibroblasts and macrophages, highlighting their associations with LNM. The deep learning model was trained using 405 pathology slides and RNA sequences from 328 PTC patients and validated with 181 slides and RNA sequences from 140 PTC patients in the TCGA cohort. It achieved high accuracy, with an AUC of 0.86 in the training cohort, 0.84 in the validation cohort, and 0.83 in the real-world cohort 2. High-risk patients in the training cohort had significantly lower DFS rates ( P <0.001). Model AUCs were 0.91 at 1 year, 0.93 at 3 years, and 0.87 at 5 years. In the validation cohort, high-risk patients also had lower DFS ( P <0.001); the AUCs were 0.89, 0.87, and 0.80 at 1, 3, and 5 years. We utilized the GradCAM algorithm to generate heatmaps from pathology-based deep learning models, which visually highlighted high-risk tumor areas in PTC patients. This enhanced clinicians’ understanding of the model’s predictions and improved diagnostic accuracy, especially in cases with lymph node metastasis. Conclusion: The AI-based analysis uncovered vital insights into PTC molecular heterogeneity, emphasizing BRAF mutations’ impact. The integrated deep learning model shows promise in predicting metastasis, offering valuable contributions to improved diagnostic and therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yunidesuuu完成签到,获得积分10
1秒前
2秒前
啧啧啧完成签到,获得积分10
2秒前
Luka应助spujo采纳,获得30
3秒前
天桂星发布了新的文献求助10
5秒前
初青酱发布了新的文献求助10
6秒前
tzp关闭了tzp文献求助
6秒前
领导范儿应助科研通管家采纳,获得30
7秒前
慕青应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
L柒完成签到 ,获得积分10
8秒前
kkkkkoi发布了新的文献求助10
9秒前
9秒前
11秒前
14秒前
348847119发布了新的文献求助10
15秒前
在水一方应助天桂星采纳,获得10
15秒前
vulgar发布了新的文献求助10
17秒前
板凳发布了新的文献求助30
17秒前
kkkkkoi完成签到,获得积分10
20秒前
KennyS发布了新的文献求助10
21秒前
pokexuejiao发布了新的文献求助10
21秒前
21秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211237
捐赠科研通 3038044
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098