Deep learning-based multimodal spatial transcriptomics analysis for cancer

精密医学 深度学习 卷积神经网络 人工智能 数据集成 计算机科学 个性化医疗 机器学习 计算生物学 数据科学 生物信息学 医学 生物 数据挖掘 病理
作者
Pankaj Rajdeo,Bruce J. Aronow,V. B. Surya Prasath
出处
期刊:Advances in Cancer Research [Elsevier BV]
卷期号:: 1-38
标识
DOI:10.1016/bs.acr.2024.08.001
摘要

The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized cancer research, offering unprecedented insights into tumor biology. This book chapter explores the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision medicine. DL, a subset of artificial intelligence, employs neural networks to model complex patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In oncology, convolutional neural networks excel in image classification, segmentation, and tumor volume analysis, essential for identifying tumors and optimizing radiotherapy. The chapter also delves into multimodal data analysis, which integrates genomic, proteomic, imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment interactions, and treatment responses. Examples include integrating MRI data with genomic profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug resistance mechanisms. DL's integration with multimodal data enables comprehensive and actionable insights for cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable applications include ST, which maps gene expression patterns within tissue contexts, providing critical insights into tumor heterogeneity and potential therapeutic targets. In summary, the integration of DL and multimodal ST represents a paradigm shift towards more precise and personalized oncology. This chapter elucidates the methodologies and applications of these advanced technologies, highlighting their transformative potential in cancer research and clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小烦同学发布了新的文献求助10
刚刚
zcl给哇哇卡哇的求助进行了留言
1秒前
充满希望发布了新的文献求助10
1秒前
77完成签到,获得积分20
2秒前
king发布了新的文献求助10
2秒前
2秒前
2秒前
爆米花应助开心采纳,获得10
3秒前
3秒前
科研通AI2S应助把妹王采纳,获得10
3秒前
ruqinmq发布了新的文献求助10
3秒前
4秒前
霸气的如娆完成签到,获得积分10
4秒前
大模型应助Piky采纳,获得10
4秒前
5秒前
科研通AI6应助现实的书本采纳,获得10
5秒前
ZSQQZX发布了新的文献求助10
5秒前
雨霖铃完成签到 ,获得积分10
6秒前
john发布了新的文献求助10
6秒前
舒适的初雪完成签到,获得积分10
6秒前
海棠完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
科研通AI2S应助知12采纳,获得10
7秒前
烂漫傲晴发布了新的文献求助10
7秒前
l_qw完成签到,获得积分10
8秒前
充满希望完成签到,获得积分10
9秒前
lsl发布了新的文献求助10
9秒前
9秒前
orixero应助无足鸟采纳,获得10
10秒前
10秒前
11秒前
小罗发布了新的文献求助10
12秒前
小呆呆发布了新的文献求助10
12秒前
科研通AI6应助fantasy采纳,获得10
12秒前
12秒前
13秒前
wow完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262360
求助须知:如何正确求助?哪些是违规求助? 4423393
关于积分的说明 13769561
捐赠科研通 4298047
什么是DOI,文献DOI怎么找? 2358231
邀请新用户注册赠送积分活动 1354555
关于科研通互助平台的介绍 1315726