亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Ensemble Deep Learning Algorithm for Structural Heart Disease Screening Using Electrocardiographic Images: PRESENT SHD

人工智能 心脏病 集成学习 算法 疾病 计算机科学 心脏病学 机器学习 模式识别(心理学) 内科学 医学
作者
Lovedeep Singh Dhingra,Arya Aminorroaya,Veer Sangha,Aline F Pedroso,Sumukh Vasisht Shankar,Andreas Coppi,Murilo Foppa,Luísa Campos Caldeira Brant,Sandhi Maria Barreto,Antônio Luiz Pinho Ribeiro,Harlan M. Krumholz,Evangelos K. Oikonomou,Rohan Khera
标识
DOI:10.1101/2024.10.06.24314939
摘要

ABSTRACT Background Identifying structural heart diseases (SHDs) early can change the course of the disease, but their diagnosis requires cardiac imaging, which is limited in accessibility. Objective To leverage images of 12-lead ECGs for automated detection and prediction of multiple SHDs using an ensemble deep learning approach. Methods We developed a series of convolutional neural network models for detecting a range of individual SHDs from images of ECGs with SHDs defined by transthoracic echocardiograms (TTEs) performed within 30 days of the ECG at the Yale New Haven Hospital (YNHH). SHDs were defined as LV ejection fraction <40%, moderate-to-severe left-sided valvular disease (aortic/mitral stenosis or regurgitation), or severe left ventricular hypertrophy (IVSd > 1.5cm and diastolic dysfunction). We developed an ensemble XGBoost model, PRESENT-SHD, as a composite screen across all SHDs. We validated PRESENT-SHD at 4 US hospitals and the prospective, population-based Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), with concurrent protocolized ECGs and TTEs. We also used PRESENT-SHD for risk stratification of new-onset SHD or heart failure (HF) in clinical cohorts and the population-based UK Biobank (UKB). Results The models were developed using 261,228 ECGs from 93,693 YNHH patients and evaluated on a single ECG from 11,023 individuals at YNHH (19% with SHD), 44,591 across external hospitals (20-27% with SHD), and 3,014 in the ELSA-Brasil (3% with SHD). In the held-out test set, PRESENT-SHD demonstrated an AUROC of 0.886 (0.877-894), 90% sensitivity, and 66% specificity. At hospital-based sites, PRESENT-SHD had AUROCs ranging from 0.854-0.900, with sensitivities and specificities of 93-96% and 51-56%, respectively. The model generalized well to ELSA-Brasil (AUROC, 0.853 [0.811-0.897], 88% sensitivity, 62% specificity). PRESENT-SHD demonstrated consistent performance across demographic subgroups, novel ECG formats, and smartphone photographs of ECGs from monitors and printouts. A positive PRESENT-SHD screen portended a 2- to 4-fold higher risk of new-onset SHD/HF, independent of demographics, comorbidities, and the competing risk of death across clinical sites and UKB, with high predictive discrimination. Conclusion We developed and validated PRESENT-SHD, an AI-ECG tool identifying a range of SHD using images of 12-lead ECGs, representing a robust, scalable, and accessible modality for automated SHD screening and risk stratification. CONDENSED ABSTRACT Screening for structural heart disorders (SHDs) requires cardiac imaging, which has limited accessibility. To leverage 12-lead ECG images for automated detection and prediction of multiple SHDs, we developed PRESENT-SHD, an ensemble deep learning model. PRESENT-SHD demonstrated excellent performance in detecting SHDs across 5 US hospitals and a population-based cohort in Brazil. The model successfully predicted the risk of new-onset SHD or heart failure in both US clinical cohorts and the community-based UK Biobank. By using ubiquitous ECG images and smartphone photographs to predict a composite outcome of multiple SHDs, PRESENT-SHD establishes a scalable paradigm for cardiovascular screening and risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12345发布了新的文献求助10
5秒前
17秒前
twk发布了新的文献求助10
23秒前
joeqin完成签到,获得积分10
31秒前
39秒前
39秒前
40秒前
田様应助科研通管家采纳,获得10
40秒前
ZaZa完成签到,获得积分10
1分钟前
1分钟前
zhao发布了新的文献求助10
1分钟前
1分钟前
研友_ZbP41L完成签到 ,获得积分10
1分钟前
zhao完成签到,获得积分10
2分钟前
charih完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
FashionBoy应助白云四季采纳,获得10
2分钟前
jyzzz应助张浩采纳,获得10
3分钟前
4分钟前
4分钟前
wangzai发布了新的文献求助10
4分钟前
赘婿应助堪冥采纳,获得10
4分钟前
wangzai完成签到,获得积分10
4分钟前
荷兰香猪完成签到,获得积分10
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
Tobby发布了新的文献求助20
4分钟前
时间煮雨我煮鱼完成签到,获得积分10
4分钟前
Tobby完成签到,获得积分10
4分钟前
Voyager发布了新的文献求助10
5分钟前
5分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746922
求助须知:如何正确求助?哪些是违规求助? 5440291
关于积分的说明 15356030
捐赠科研通 4886949
什么是DOI,文献DOI怎么找? 2627491
邀请新用户注册赠送积分活动 1575931
关于科研通互助平台的介绍 1532729