亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinically Relevant Myocardium Segmentation in Cardiac Magnetic Resonance Images

分割 计算机科学 人工智能 深度学习 Sørensen–骰子系数 豪斯多夫距离 管道(软件) 图像分割 模式识别(心理学) 人工神经网络 像素 对象(语法) 计算机视觉 程序设计语言
作者
Rohit Gavirni,Divij Gupta,Deepak Mishra,Arbind Gupta,Sanjaya Viswamitra
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 2423-2431 被引量:5
标识
DOI:10.1109/jbhi.2023.3250429
摘要

Deep learning approaches have shown great success in myocardium region segmentation in Cardiac MR (CMR) images. However, most of these often ignore irregularities such as protrusions, breaks in contour, etc. As a result, the common practice by clinicians is to manually correct the obtained outputs for the evaluation of myocardium condition. This paper aims to make the deep learning systems capable of handling the aforementioned irregularities and satisfy desired clinical constraints, necessary for various downstream clinical analysis. We propose a refinement model which imposes structural constraints on the outputs of the existing deep learning-based myocardium segmentation methods. The complete system is a pipeline of deep neural networks where an initial network performs myocardium segmentation as accurate as possible and the refinement network removes defects from the initial output to make it suitable for clinical decision support systems. We experiment with datasets collected from four different sources and observe consistent final segmentation outputs with improvement up to 8% in Dice Coefficient and up to 18 pixels in Hausdorff Distance due to the proposed refinement model. The proposed refinement strategy leads to qualitative and quantitative improvements in the performances of all the considered segmentation networks. Our work is an important step towards the development of a fully automatic myocardium segmentation system. It can also be generalized for other tasks where the object of interest has regular structure and the defects can be modelled statistically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助优雅的凝阳采纳,获得10
2秒前
4秒前
9秒前
12秒前
刘坦苇发布了新的文献求助10
15秒前
SciGPT应助刘坦苇采纳,获得10
22秒前
33秒前
刘坦苇发布了新的文献求助10
38秒前
39秒前
40秒前
42秒前
Rocky_Qi发布了新的文献求助10
48秒前
54秒前
59秒前
1分钟前
Elthrai完成签到 ,获得积分10
1分钟前
1分钟前
敏敏9813完成签到,获得积分10
2分钟前
老老熊完成签到,获得积分10
2分钟前
Chen完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
小石榴的爸爸完成签到 ,获得积分10
3分钟前
3分钟前
小石榴爸爸完成签到 ,获得积分10
3分钟前
林夕完成签到 ,获得积分10
3分钟前
情怀应助雨落采纳,获得10
3分钟前
4分钟前
4分钟前
雨落发布了新的文献求助10
4分钟前
breeze发布了新的文献求助50
4分钟前
弈天完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Rocky_Qi发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482484
求助须知:如何正确求助?哪些是违规求助? 4583253
关于积分的说明 14389109
捐赠科研通 4512357
什么是DOI,文献DOI怎么找? 2472920
邀请新用户注册赠送积分活动 1459096
关于科研通互助平台的介绍 1432591