Conditional inference in cis‐Mendelian randomization using weak genetic factors

孟德尔随机化 推论 因果推理 工具变量 鉴定(生物学) 计算机科学 相关性(法律) 遗传变异 统计 机器学习 生物 人工智能 数学 遗传学 基因 基因型 政治学 法学 植物
作者
Ashish Patel,Dipender Gill,Paul Newcombe,Stephen Burgess
出处
期刊:Biometrics [Oxford University Press]
被引量:3
标识
DOI:10.1111/biom.13888
摘要

Abstract Mendelian randomization (MR) is a widely used method to estimate the causal effect of an exposure on an outcome by using genetic variants as instrumental variables. MR analyses that use variants from only a single genetic region ( cis ‐MR) encoding the protein target of a drug are able to provide supporting evidence for drug target validation. This paper proposes methods for cis ‐MR inference that use many correlated variants to make robust inferences even in situations, where those variants have only weak effects on the exposure. In particular, we exploit the highly structured nature of genetic correlations in single gene regions to reduce the dimension of genetic variants using factor analysis. These genetic factors are then used as instrumental variables to construct tests for the causal effect of interest. Since these factors may often be weakly associated with the exposure, size distortions of standard t ‐tests can be severe. Therefore, we consider two approaches based on conditional testing. First, we extend results of commonly‐used identification‐robust tests for the setting where estimated factors are used as instruments. Second, we propose a test which appropriately adjusts for first‐stage screening of genetic factors based on their relevance. Our empirical results provide genetic evidence to validate cholesterol‐lowering drug targets aimed at preventing coronary heart disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lyt完成签到,获得积分10
1秒前
1秒前
2秒前
朱可芯发布了新的文献求助10
3秒前
wonderful完成签到,获得积分10
4秒前
4秒前
win完成签到 ,获得积分10
5秒前
5秒前
6秒前
雷yg发布了新的文献求助10
6秒前
香蕉觅云应助zimo采纳,获得10
7秒前
7秒前
朱可芯完成签到,获得积分10
9秒前
狂野世立发布了新的文献求助10
9秒前
XQQDD完成签到,获得积分10
9秒前
元谷雪发布了新的文献求助30
10秒前
岁月如歌完成签到,获得积分20
11秒前
岁月如歌发布了新的文献求助10
13秒前
15秒前
优克莉伍德完成签到,获得积分20
16秒前
16秒前
秋寒完成签到,获得积分20
16秒前
田様应助naturehome采纳,获得10
18秒前
zhouleiwang完成签到,获得积分10
18秒前
雷yg完成签到,获得积分10
20秒前
vic发布了新的文献求助10
22秒前
23秒前
安静傲丝完成签到,获得积分20
23秒前
......完成签到,获得积分10
25秒前
荣仔发布了新的文献求助10
26秒前
grs完成签到,获得积分10
26秒前
vic完成签到,获得积分10
28秒前
dox完成签到,获得积分10
29秒前
魁梧的鸿煊完成签到 ,获得积分10
29秒前
王磊完成签到 ,获得积分10
32秒前
33秒前
36秒前
37秒前
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307