Identifying mangroves through knowledge extracted from trained random forest models: An interpretable mangrove mapping approach (IMMA)

可解释性 随机森林 红树林 计算机科学 黑匣子 假阳性悖论 人工智能 仰角(弹道) 植被(病理学) 数据挖掘 机器学习 模式识别(心理学) 遥感 地理 生态学 数学 医学 生物 几何学 病理
作者
Chenyang Zhao,Mingming Jia,Zongming Wang,Dehua Mao,Yeqiao Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 209-225 被引量:9
标识
DOI:10.1016/j.isprsjprs.2023.05.025
摘要

Black-box algorithms are among the dominant mangrove mapping approaches with complex decision-making procedures. Model internals and tacit knowledge were neglected, such as a large number of decision rules provided by random forest (RF) analyses. Explainable artificial intelligence (XAI) has emerged to emphasize the interpretability of an approach. However, current knowledge-based mangrove mapping approaches rely on extensive experiments. Thus, they cannot be easily updated to accommodate new issues, such as prevalent false positives resulting from insufficient consideration of the spectral mixture of vegetation and water in existing studies. To combine the advantages of black-box-based approaches with high update rates and knowledge-based approaches with high interpretability, this study developed a knowledge extraction method by parsing trained RF models, reconstructing decision rules to incorporate the ensemble procedure, and selecting the optimal decision rule as the target. Using this method, an interpretable mangrove mapping approach (IMMA) consisting of five features was constructed, which derived from Sentinel-2 image bands and a digital elevation model: B12 < 0.06 & B8/B2 > 3.50 & elevation < 4.70 & mangrove vegetation index (MVI) > 2.92 & normalized difference index4 (NDI) < 0.07. The study achieved an overall accuracy (OA) of 82.3% along the entire coast of China using test samples. Comparatively, it achieved an OA of 78.8% in south Florida, with no training samples for the RF models. The IMMA approach had a limited number of false positives compared with the black-box-based and knowledge-based approaches. By analyzing, we found B12 < 0.06 & B8/B2 > 3.50 & elevation < 4.70 dominated the IMMA to achieve comparable classification results to the existing studies, and B8/B2 > 3.50 was the key to suppressing the false positives resulting from the spectral mixture. The IMMA provided a bridge between training samples and interpretable decision rules, a tool to discover new knowledge, a key to improving fundamental scientific understanding of mangrove mapping, and an alternative to black-box algorithms in the XAI era expandable to various fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助hana采纳,获得10
刚刚
陵亚未发布了新的文献求助10
1秒前
opticsLM完成签到,获得积分10
2秒前
2秒前
RLLLLLLL完成签到 ,获得积分10
3秒前
4秒前
Freiheit发布了新的文献求助10
5秒前
陈龙发布了新的文献求助10
8秒前
秀丽文轩完成签到,获得积分10
8秒前
城北徐公完成签到,获得积分10
9秒前
科研通AI2S应助嘚嘚采纳,获得10
11秒前
荼白完成签到 ,获得积分10
13秒前
深情安青应助秀丽文轩采纳,获得10
14秒前
Owen应助赵懂采纳,获得10
15秒前
酷波er应助赵懂采纳,获得10
15秒前
CodeCraft应助PureKK采纳,获得10
15秒前
15秒前
17秒前
17秒前
20秒前
Leisure_Lee完成签到,获得积分10
20秒前
eurus发布了新的文献求助10
20秒前
tongzehui发布了新的文献求助10
21秒前
Monica发布了新的文献求助10
21秒前
情怀应助Freiheit采纳,获得10
21秒前
22秒前
姚芭蕉完成签到 ,获得积分0
22秒前
23秒前
丘比特应助开朗青旋采纳,获得10
24秒前
壮观的寒松应助eurus采纳,获得10
25秒前
PureKK发布了新的文献求助10
27秒前
哈哈哈哈发布了新的文献求助10
27秒前
醉熏的荣轩完成签到 ,获得积分20
27秒前
29秒前
香蕉觅云应助Monica采纳,获得10
29秒前
ls完成签到,获得积分10
30秒前
卑微学术人完成签到 ,获得积分10
31秒前
爱听歌采白完成签到,获得积分10
31秒前
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332038
捐赠科研通 3063426
什么是DOI,文献DOI怎么找? 1681673
邀请新用户注册赠送积分活动 807650
科研通“疑难数据库(出版商)”最低求助积分说明 763843