Identifying mangroves through knowledge extracted from trained random forest models: An interpretable mangrove mapping approach (IMMA)

可解释性 随机森林 红树林 计算机科学 黑匣子 假阳性悖论 人工智能 仰角(弹道) 植被(病理学) 数据挖掘 机器学习 模式识别(心理学) 遥感 地理 生态学 数学 医学 生物 几何学 病理
作者
Chuanpeng Zhao,Mingming Jia,Zongming Wang,Dehua Mao,Yeqiao Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 209-225 被引量:41
标识
DOI:10.1016/j.isprsjprs.2023.05.025
摘要

Black-box algorithms are among the dominant mangrove mapping approaches with complex decision-making procedures. Model internals and tacit knowledge were neglected, such as a large number of decision rules provided by random forest (RF) analyses. Explainable artificial intelligence (XAI) has emerged to emphasize the interpretability of an approach. However, current knowledge-based mangrove mapping approaches rely on extensive experiments. Thus, they cannot be easily updated to accommodate new issues, such as prevalent false positives resulting from insufficient consideration of the spectral mixture of vegetation and water in existing studies. To combine the advantages of black-box-based approaches with high update rates and knowledge-based approaches with high interpretability, this study developed a knowledge extraction method by parsing trained RF models, reconstructing decision rules to incorporate the ensemble procedure, and selecting the optimal decision rule as the target. Using this method, an interpretable mangrove mapping approach (IMMA) consisting of five features was constructed, which derived from Sentinel-2 image bands and a digital elevation model: B12 < 0.06 & B8/B2 > 3.50 & elevation < 4.70 & mangrove vegetation index (MVI) > 2.92 & normalized difference index4 (NDI) < 0.07. The study achieved an overall accuracy (OA) of 82.3% along the entire coast of China using test samples. Comparatively, it achieved an OA of 78.8% in south Florida, with no training samples for the RF models. The IMMA approach had a limited number of false positives compared with the black-box-based and knowledge-based approaches. By analyzing, we found B12 < 0.06 & B8/B2 > 3.50 & elevation < 4.70 dominated the IMMA to achieve comparable classification results to the existing studies, and B8/B2 > 3.50 was the key to suppressing the false positives resulting from the spectral mixture. The IMMA provided a bridge between training samples and interpretable decision rules, a tool to discover new knowledge, a key to improving fundamental scientific understanding of mangrove mapping, and an alternative to black-box algorithms in the XAI era expandable to various fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Wguan完成签到,获得积分10
4秒前
7秒前
yk完成签到 ,获得积分10
8秒前
小猪完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
1233完成签到 ,获得积分10
11秒前
12秒前
莲意神韵完成签到,获得积分10
13秒前
15秒前
可爱的函函应助卷卷采纳,获得10
16秒前
xiaochen完成签到 ,获得积分10
18秒前
自然的新烟完成签到,获得积分10
18秒前
19秒前
21秒前
elysia完成签到,获得积分10
21秒前
郭楠发布了新的文献求助10
21秒前
JingP完成签到,获得积分10
23秒前
Christina发布了新的文献求助10
25秒前
金秋完成签到,获得积分10
26秒前
biofresh完成签到,获得积分10
27秒前
从容的丹南完成签到 ,获得积分10
28秒前
CipherSage应助郭楠采纳,获得10
28秒前
Yuuki完成签到,获得积分10
29秒前
Demi_Ming完成签到,获得积分10
30秒前
30秒前
joyce完成签到,获得积分10
30秒前
32秒前
Gideon完成签到,获得积分10
32秒前
June完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
35秒前
湛湛发布了新的文献求助10
35秒前
rainyoun完成签到 ,获得积分10
37秒前
niNe3YUE完成签到,获得积分0
37秒前
lxcy0612完成签到,获得积分10
38秒前
薯片完成签到,获得积分10
39秒前
Christina完成签到,获得积分10
40秒前
冰华完成签到,获得积分10
42秒前
徐佳达完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677117
求助须知:如何正确求助?哪些是违规求助? 4970731
关于积分的说明 15159427
捐赠科研通 4836814
什么是DOI,文献DOI怎么找? 2591334
邀请新用户注册赠送积分活动 1544808
关于科研通互助平台的介绍 1502841