ARCH模型
计量经济学
波动性(金融)
证券交易所
综合指数
代理(统计)
经济
库存(枪支)
水准点(测量)
计算机科学
财务
工程类
机器学习
地理
综合指标
机械工程
大地测量学
作者
Xinyu Wu,Ang Zhao,Thomas C. Cheng
标识
DOI:10.1016/j.frl.2023.104103
摘要
This paper proposes the Real-Time GARCH-MIDAS model to model and forecast volatility. An empirical application to the Shanghai Stock Exchange Composite Index (SSEC) and Shenzhen Stock Exchange Component Index (SZSEC) of China shows that the Real-Time GARCH-MIDAS model outperforms competing models in terms of both empirical return fitting and out-of-sample volatility forecasting. Moreover, the superior forecasting performance of the Real-Time GARCH-MIDAS model is robust to alternative rolling windows, alternative benchmark models, alternative MIDAS lags and alternative volatility proxy. Further discussion illustrates the flexibility of the Real-Time GARCH-MIDAS model.
科研通智能强力驱动
Strongly Powered by AbleSci AI