Collaborative Defense-GAN for protecting adversarial attacks on classification system

对抗制 计算机科学 深度学习 稳健性(进化) 人工智能 机器学习 深层神经网络 脆弱性(计算) 黑匣子 计算 对抗性机器学习 水准点(测量) 计算机安全 算法 基因 生物化学 化学 地理 大地测量学
作者
Pranpaveen Laykaviriyakul,Ekachai Phaisangittisagul
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:214: 118957-118957 被引量:5
标识
DOI:10.1016/j.eswa.2022.118957
摘要

With rapid progress and significant successes in a wide domain of applications, deep learning has been extensively employed for solving complex problems. However, performance of deep learning has been vulnerable to well-designed samples, called adversarial samples. These samples are carefully designed to deceive the deep learning models without human perception. Therefore, vulnerability to adversarial attacks becomes one of the major concerns in life-critical applications of deep learning. In this paper, a novel approach to counter adversarial samples is proposed to strengthen the robustness of a deep learning model. The strategy is to filter the perturbation noise in adversarial samples prior to prediction. The proposed defense framework is based on DiscoGANs to discover the relation between attacker and defender characteristics. Attacker models are created to generate the adversarial samples from the training data, while the defender model is trained to reconstruct original samples from the adversarial samples. These two frameworks are trained to compete with each other in an alternating manner. The experimental results on different attack models are compared with popular defense mechanisms on three benchmark datasets. Our proposed method shows promising results and can improve the robustness on both white-box and black-box attacks including the computation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZM完成签到,获得积分10
刚刚
怕黑道消完成签到 ,获得积分10
1秒前
哈罗完成签到,获得积分10
1秒前
机智小懒虫完成签到,获得积分10
1秒前
纯真小蜜蜂完成签到,获得积分10
2秒前
ni完成签到 ,获得积分10
3秒前
萧水白发布了新的文献求助100
3秒前
大仙完成签到,获得积分10
4秒前
勤奋的天亦完成签到,获得积分10
4秒前
失眠的哈密瓜完成签到,获得积分10
5秒前
温水完成签到,获得积分10
6秒前
眼睛大的从雪完成签到,获得积分10
6秒前
所所应助王多肉采纳,获得200
6秒前
SciGPT应助BENRONG采纳,获得10
7秒前
QQ完成签到 ,获得积分10
7秒前
每念至此完成签到,获得积分10
7秒前
李超完成签到,获得积分10
7秒前
7秒前
活力亦瑶完成签到,获得积分10
8秒前
云清发布了新的文献求助10
8秒前
mechefy完成签到,获得积分10
9秒前
梁笨笨完成签到,获得积分20
9秒前
一夜秋风花尽落完成签到,获得积分10
9秒前
yiqifan完成签到,获得积分10
10秒前
xiaoxuantu发布了新的文献求助10
10秒前
慕青应助soda采纳,获得10
10秒前
11秒前
大鹏完成签到,获得积分10
11秒前
渭水飞熊完成签到,获得积分10
11秒前
zyz完成签到,获得积分10
11秒前
xxx完成签到,获得积分10
12秒前
12秒前
活力妙芙完成签到,获得积分10
13秒前
rh1006完成签到,获得积分10
13秒前
sunny心晴完成签到 ,获得积分10
13秒前
13秒前
菲菲完成签到,获得积分10
14秒前
哇哈哈完成签到,获得积分10
14秒前
CipherSage应助只好采纳,获得10
14秒前
王多肉完成签到,获得积分10
15秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830672
求助须知:如何正确求助?哪些是违规求助? 3372994
关于积分的说明 10476648
捐赠科研通 3093056
什么是DOI,文献DOI怎么找? 1702310
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153