Highly Conductive Nitrogen‐Doped sp2/sp3 Hybrid Carbon as a Conductor‐Free Charge Storage Host

材料科学 杂原子 碳纤维 掺杂剂 电导率 费米能级 兴奋剂 导电体 纳米技术 化学物理 光电子学 电子 复合材料 化学 有机化学 物理化学 戒指(化学) 物理 量子力学 复合数
作者
Qi Wang,Jincang Su,Hailun Chen,Deqiang Wang,Xiao Yu Tian,Yujian Zhang,Xin Feng,Shun Wang,Jun Li,Huile Jin
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (51) 被引量:59
标识
DOI:10.1002/adfm.202209201
摘要

Abstract It is commonly accepted that the increased degree of graphitization leads to a higher electrical conductivity of carbon materials. However, more and more evidence reveals that heteroatom doping on carbon host can also improve the conductivity, owing to the dopant atoms contributing to higher charge delocalization and density of donor states near Fermi level. The reality is, such conductivity improvement from doping is often overwhelmed by graphitized carbon. Although heteroatom‐doped carbon is widely used as active materials in the fields of energy storage and electrocatalysis, which still requires extra carbon‐based conductive additives to enhance the overall conductivity. In this stu, it is demonstrated that the electrical conductivity of finely designed nitrogen‐doped carbon is even beyond the commercialized carbon conductors over 3.5 times, endowing such conductive agent‐free electrode material an excellent performance in an all‐solid‐state flexible supercapacitor. The theoretical simulation further demonstrates that N‐doped sp 2 /sp 3 hybrid carbon can migrate the Fermi level to the conduction band, leading to an n ‐type conductivity due to the additional electrons caused by the N dopant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助hello采纳,获得10
刚刚
情怀应助42采纳,获得30
刚刚
cherish发布了新的文献求助10
1秒前
吴彦祖发布了新的文献求助10
1秒前
一颗药顽完成签到,获得积分10
3秒前
听雨潇潇发布了新的文献求助10
4秒前
玛卡巴卡完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
9秒前
科研通AI5应助程莉采纳,获得10
9秒前
ZhouYW应助李荣航采纳,获得10
9秒前
Landau发布了新的文献求助10
10秒前
keko完成签到,获得积分10
10秒前
清脆雪糕发布了新的文献求助10
11秒前
hehe发布了新的文献求助10
11秒前
旺旺小小贝完成签到,获得积分10
11秒前
13秒前
13秒前
大力的汉堡完成签到,获得积分10
13秒前
贪玩的采珊完成签到,获得积分10
14秒前
Zxy发布了新的文献求助10
14秒前
Landau完成签到,获得积分10
15秒前
打打应助高乐多采纳,获得10
17秒前
怡然的谷蓝完成签到,获得积分10
17秒前
一苇以航应助毛豆爱睡觉采纳,获得20
18秒前
自信的紫夏完成签到,获得积分10
18秒前
ylky发布了新的文献求助30
18秒前
18秒前
爱学习棒棒糖完成签到,获得积分10
19秒前
42发布了新的文献求助30
19秒前
852应助坚定冬易采纳,获得10
20秒前
20秒前
ZhouYW应助李荣航采纳,获得10
21秒前
天天快乐应助lizhiqian2024采纳,获得10
21秒前
脑洞疼应助言言言言采纳,获得10
22秒前
22秒前
今后应助碧蓝梦容采纳,获得10
22秒前
科研通AI2S应助hehe采纳,获得10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635