Extraction of fractures in shale CT images using improved U-Net

断裂(地质) 人工智能 Canny边缘检测器 计算机科学 模式识别(心理学) 边缘检测 分割 灰度 地质学 像素 计算机视觉 图像(数学) 图像处理 岩土工程
作者
Xiang Wu,Fei Wang,Xiaoqiu Zhang,Bohua Han,Qianru Liu,Yonghao Zhang
出处
期刊:Energy geoscience [Elsevier BV]
卷期号:5 (2): 100185-100185 被引量:11
标识
DOI:10.1016/j.engeos.2023.100185
摘要

Accurate extraction of pores and fractures is a prerequisite for constructing digital rocks for physical property simulation and microstructural response analysis. However, fractures in CT images are similar in grayscale to the rock matrix, and traditional algorithms have difficulty to achieve accurate segmentation results. In this study, a dataset containing multiscale fracture information was constructed, and a U-Net semantic segmentation model with a scSE attention mechanism was used to classify shale CT images at the pixel level and compare the results with traditional methods. The results showed that the CLAHE algorithm effectively removed noise and enhanced the fracture information in the dark parts, which is beneficial for further fracture extraction. The Canny edge detection algorithm had significant false positives and failed to recognize the internal information of the fractures. The Otsu algorithm only extracted fractures with a significant difference from the background and was not sensitive enough for fine fractures. The MEF algorithm enhanced the edge information of the fractures and was also sensitive to fine fractures, but it overestimated the aperture of the fractures. The U-Net was able to identify almost all fractures with good continuity, with an MIou and Recall of 0.80 and 0.82, respectively. As the image resolution increases, more fine fracture information can be extracted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二完成签到,获得积分10
刚刚
3秒前
今后应助相约在天边采纳,获得10
3秒前
阿米巴ing完成签到,获得积分10
9秒前
木又完成签到 ,获得积分10
11秒前
竹焚完成签到 ,获得积分10
12秒前
脑洞疼应助药石无医采纳,获得10
12秒前
12秒前
星辰大海应助gdh采纳,获得10
12秒前
搜集达人应助迷你的依凝采纳,获得10
13秒前
Cll完成签到 ,获得积分10
13秒前
sugawife发布了新的文献求助30
14秒前
sciforce完成签到,获得积分10
14秒前
星辰大海应助害羞的败采纳,获得10
15秒前
long发布了新的文献求助10
16秒前
Jocenly完成签到 ,获得积分10
17秒前
20秒前
Riggs_蹊发布了新的文献求助10
20秒前
研友_ZGRvon完成签到,获得积分10
21秒前
药石无医发布了新的文献求助10
25秒前
25秒前
27秒前
Jocenly关注了科研通微信公众号
28秒前
司宁完成签到,获得积分10
28秒前
外向又菱发布了新的文献求助10
33秒前
乐观尔容发布了新的文献求助10
35秒前
123456789完成签到,获得积分10
35秒前
35秒前
38秒前
我睡觉不会困12138完成签到 ,获得积分10
39秒前
40秒前
鹏鹏完成签到 ,获得积分10
40秒前
yeah发布了新的文献求助10
41秒前
42秒前
44秒前
乐观尔容完成签到,获得积分20
44秒前
46秒前
mm完成签到 ,获得积分10
47秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4526013
求助须知:如何正确求助?哪些是违规求助? 3965988
关于积分的说明 12291573
捐赠科研通 3630478
什么是DOI,文献DOI怎么找? 1997988
邀请新用户注册赠送积分活动 1034331
科研通“疑难数据库(出版商)”最低求助积分说明 923910