Mapping Immune–Tumor Bidirectional Dialogue Using Ultrasensitive Nanosensors for Accurate Diagnosis of Lung Cancer

肺癌 免疫系统 癌症 肿瘤微环境 医学 癌症研究 免疫学 病理 内科学
作者
Swarna Ganesh,Priya Dharmalingam,Sunit Das,Krishnan Venkatakrishnan,Bo Tan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (9): 8026-8040 被引量:1
标识
DOI:10.1021/acsnano.2c09323
摘要

Lung cancer is one of the most common cancers with high mortality worldwide despite the development of molecularly targeted therapies and immunotherapies. A significant challenge in managing lung cancer is the accurate diagnosis of cancerous lesions owing to the lack of sensitive and specific biomarkers. The current procedure necessitates an invasive tissue biopsy for diagnosis and molecular subtyping, which presents patients with risk, morbidity, anxiety, and high false-positive rates. The high-risk diagnostic approach has highlighted the need to search for a reliable, low-risk noninvasive diagnostic approach to capture lung cancer heterogeneity precisely. The immune interaction profile of lung cancer is driven by immune cells' distinctive, precise interactions with the tumor microenvironment. Here, we hypothesize that immune cells, particularly T cells, can be used for accurate lung cancer diagnosis by exploiting the distinctive immune-tumor interaction by detecting the immune-diagnostic signature. We have developed an ultrasensitive T-sense nanosensor to probe these specific diagnostic signatures using the physical synthesis process of multiphoton ionization. Our research employed predictive in vitro models of lung cancers, cancer-associated T cells (PCAT, MCAT) and CSC-associated T cells (PCSCAT, MCSCAT), from primary and metastatic lung cancer patients to reveal the immune-diagnostic signature and uncover the molecular, functional, and phenotypic separation between patient-derived T cells (PDT) and healthy samples. We demonstrated this by adopting a machine learning model trained with SERS data obtained using cocultured T cells with preclinical models (CAT, CSCAT) of primary (H69AR) and metastatic lung cancer (H1915). Interrogating these distinct signatures with PDT captured the complexity and diversity of the tumor-associated T cell signature across the patient population, exposing the clinical feasibility of immune diagnosis in an independent cohort of patient samples. Thus, our predictive approach using T cells from the patient peripheral blood showed a highly accurate diagnosis with a specificity and sensitivity of 94.1% and 100%, respectively, for primary lung cancer and 97.9% and 94.4% for metastatic lung cancer. Our results prove that the immune-diagnostic signature developed in this study could be used as a clinical technology for cancer diagnosis and determine the course of clinical management with T cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dyy完成签到,获得积分10
1秒前
HOHO完成签到,获得积分10
1秒前
1秒前
鲸鱼发布了新的文献求助10
1秒前
1秒前
wzqer完成签到,获得积分10
1秒前
1秒前
CipherSage应助脆脆鲨采纳,获得10
2秒前
汪汪队爱淋雨完成签到 ,获得积分10
2秒前
SciGPT应助硬币采纳,获得30
2秒前
2秒前
焰古完成签到,获得积分10
3秒前
NexusExplorer应助1+1采纳,获得10
3秒前
xxfsx应助超帅的岱周采纳,获得10
3秒前
崔雪峰发布了新的文献求助10
3秒前
hanyu发布了新的文献求助10
3秒前
CodeCraft应助Mizuki采纳,获得10
4秒前
木木完成签到 ,获得积分10
4秒前
甜的瓜完成签到,获得积分10
5秒前
5秒前
Azusa完成签到,获得积分10
5秒前
5秒前
舒心的耷完成签到,获得积分10
5秒前
6秒前
Lio完成签到,获得积分10
7秒前
sunflowertxy完成签到 ,获得积分10
7秒前
畅快的新瑶完成签到,获得积分10
8秒前
合适小凝发布了新的文献求助10
9秒前
9秒前
过雨露完成签到,获得积分10
10秒前
白路完成签到,获得积分10
10秒前
FashionBoy应助ShiRz采纳,获得100
10秒前
10秒前
su完成签到,获得积分20
10秒前
123发布了新的文献求助10
11秒前
xxfsx应助zhouyin2采纳,获得10
11秒前
xxfsx应助zhouyin2采纳,获得10
11秒前
11秒前
哈哈发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167562
求助须知:如何正确求助?哪些是违规求助? 4359589
关于积分的说明 13573397
捐赠科研通 4205906
什么是DOI,文献DOI怎么找? 2306732
邀请新用户注册赠送积分活动 1306319
关于科研通互助平台的介绍 1252909