Mapping Immune–Tumor Bidirectional Dialogue Using Ultrasensitive Nanosensors for Accurate Diagnosis of Lung Cancer

肺癌 免疫系统 癌症 肿瘤微环境 医学 癌症研究 免疫学 病理 内科学
作者
Swarna Ganesh,Priya Dharmalingam,Sunit Das,Krishnan Venkatakrishnan,Bo Tan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (9): 8026-8040 被引量:1
标识
DOI:10.1021/acsnano.2c09323
摘要

Lung cancer is one of the most common cancers with high mortality worldwide despite the development of molecularly targeted therapies and immunotherapies. A significant challenge in managing lung cancer is the accurate diagnosis of cancerous lesions owing to the lack of sensitive and specific biomarkers. The current procedure necessitates an invasive tissue biopsy for diagnosis and molecular subtyping, which presents patients with risk, morbidity, anxiety, and high false-positive rates. The high-risk diagnostic approach has highlighted the need to search for a reliable, low-risk noninvasive diagnostic approach to capture lung cancer heterogeneity precisely. The immune interaction profile of lung cancer is driven by immune cells' distinctive, precise interactions with the tumor microenvironment. Here, we hypothesize that immune cells, particularly T cells, can be used for accurate lung cancer diagnosis by exploiting the distinctive immune-tumor interaction by detecting the immune-diagnostic signature. We have developed an ultrasensitive T-sense nanosensor to probe these specific diagnostic signatures using the physical synthesis process of multiphoton ionization. Our research employed predictive in vitro models of lung cancers, cancer-associated T cells (PCAT, MCAT) and CSC-associated T cells (PCSCAT, MCSCAT), from primary and metastatic lung cancer patients to reveal the immune-diagnostic signature and uncover the molecular, functional, and phenotypic separation between patient-derived T cells (PDT) and healthy samples. We demonstrated this by adopting a machine learning model trained with SERS data obtained using cocultured T cells with preclinical models (CAT, CSCAT) of primary (H69AR) and metastatic lung cancer (H1915). Interrogating these distinct signatures with PDT captured the complexity and diversity of the tumor-associated T cell signature across the patient population, exposing the clinical feasibility of immune diagnosis in an independent cohort of patient samples. Thus, our predictive approach using T cells from the patient peripheral blood showed a highly accurate diagnosis with a specificity and sensitivity of 94.1% and 100%, respectively, for primary lung cancer and 97.9% and 94.4% for metastatic lung cancer. Our results prove that the immune-diagnostic signature developed in this study could be used as a clinical technology for cancer diagnosis and determine the course of clinical management with T cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fish完成签到,获得积分10
1秒前
1秒前
西门向卉完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
4秒前
乐乐应助猪猪hero采纳,获得10
5秒前
czy完成签到 ,获得积分10
5秒前
zai发布了新的文献求助10
6秒前
包容仇天完成签到,获得积分20
7秒前
ye发布了新的文献求助50
7秒前
7秒前
江瑾玥发布了新的文献求助10
7秒前
8秒前
西门向卉发布了新的文献求助10
8秒前
8秒前
xxyqddx发布了新的文献求助10
8秒前
想躺平的咸鱼人完成签到,获得积分10
9秒前
骜111发布了新的文献求助10
9秒前
zzznznnn完成签到,获得积分20
10秒前
10秒前
小夫发布了新的文献求助10
10秒前
科研通AI5应助ttttt采纳,获得10
10秒前
科研通AI5应助supertkeb采纳,获得10
10秒前
科研通AI5应助越宝采纳,获得10
11秒前
共享精神应助tt采纳,获得10
11秒前
12秒前
tc发布了新的文献求助10
12秒前
wickedzz完成签到,获得积分10
12秒前
芝士发布了新的文献求助10
13秒前
13秒前
ww完成签到 ,获得积分10
14秒前
jimmyyyyyy发布了新的文献求助10
15秒前
清皓完成签到,获得积分10
16秒前
SciGPT应助zjx采纳,获得10
16秒前
科研通AI5应助577ya采纳,获得10
16秒前
远山完成签到,获得积分10
16秒前
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
中华人民共和国出版史料 6 1954年 500
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814219
求助须知:如何正确求助?哪些是违规求助? 3358448
关于积分的说明 10394718
捐赠科研通 3075691
什么是DOI,文献DOI怎么找? 1689492
邀请新用户注册赠送积分活动 812972
科研通“疑难数据库(出版商)”最低求助积分说明 767416