Guided Hybrid Quantization for Object Detection in Remote Sensing Imagery via One-to-One Self-Teaching

计算机科学 量化(信号处理) 蒸馏 人工智能 计算 计算机工程 算法 实时计算 有机化学 化学
作者
Jiaqing Zhang,Jie Lei,Weiying Xie,Yunsong Li,Geng Yang,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:30
标识
DOI:10.1109/tgrs.2023.3293147
摘要

Deep convolutional neural networks (CNNs) have improved remote sensing image analysis, but their high computational demands may limit their deployment on low-end devices with limited resources, such as intelligent satellites and unmanned aerial vehicles. Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), an innovative idea for realizing a lightweight model through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module that automatically acquires the optimal bit-width by imposing a threshold constraint on the distribution distance between the center point and samples in the weight search space, aiming to retain more shallow detail information that is advantageous for small object detection. Third, to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network the ability to self-judgment. A switch control machine (SCM) builds a bridge between the student and teacher networks in the same location to help the teacher reduce wrong guidance and impart vital knowledge about objects without vast background information to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight, or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
刚刚
忆前尘完成签到,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
万能图书馆应助LJY采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
情怀应助薛雨佳采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
2秒前
WSH应助科研通管家采纳,获得10
2秒前
辣辣应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
Nick_71应助科研通管家采纳,获得10
2秒前
溪泉发布了新的文献求助10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
Kate发布了新的文献求助10
2秒前
辣辣应助科研通管家采纳,获得10
2秒前
2秒前
HE完成签到,获得积分10
3秒前
chaixiaomao完成签到,获得积分10
3秒前
爱研究的小马完成签到,获得积分10
3秒前
3秒前
天明发布了新的文献求助10
3秒前
在水一方应助sinlar采纳,获得10
4秒前
4秒前
4秒前
4秒前
lengchitu发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
8秒前
8秒前
善学以致用应助7777采纳,获得10
8秒前
Desperate完成签到,获得积分10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587041
求助须知:如何正确求助?哪些是违规求助? 4670226
关于积分的说明 14781682
捐赠科研通 4621791
什么是DOI,文献DOI怎么找? 2531111
邀请新用户注册赠送积分活动 1499869
关于科研通互助平台的介绍 1468002