亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Guided Hybrid Quantization for Object Detection in Remote Sensing Imagery via One-to-One Self-Teaching

计算机科学 量化(信号处理) 蒸馏 人工智能 计算 计算机工程 算法 实时计算 有机化学 化学
作者
Jiaqing Zhang,Jie Lei,Weiying Xie,Yunsong Li,Geng Yang,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2023.3293147
摘要

Deep convolutional neural networks (CNNs) have improved remote sensing image analysis, but their high computational demands may limit their deployment on low-end devices with limited resources, such as intelligent satellites and unmanned aerial vehicles. Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), an innovative idea for realizing a lightweight model through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module that automatically acquires the optimal bit-width by imposing a threshold constraint on the distribution distance between the center point and samples in the weight search space, aiming to retain more shallow detail information that is advantageous for small object detection. Third, to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network the ability to self-judgment. A switch control machine (SCM) builds a bridge between the student and teacher networks in the same location to help the teacher reduce wrong guidance and impart vital knowledge about objects without vast background information to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight, or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
yyg发布了新的文献求助10
7秒前
甜甜的以筠完成签到 ,获得积分10
52秒前
1分钟前
1分钟前
1分钟前
elena发布了新的文献求助10
1分钟前
充电宝应助yyg采纳,获得10
1分钟前
果汁儿完成签到 ,获得积分10
2分钟前
yile完成签到 ,获得积分10
2分钟前
blue完成签到 ,获得积分10
3分钟前
3分钟前
yyg发布了新的文献求助10
3分钟前
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
zzgpku完成签到,获得积分0
4分钟前
4分钟前
loen完成签到,获得积分10
4分钟前
追寻绮玉完成签到,获得积分10
4分钟前
深情安青应助yyg采纳,获得30
5分钟前
5分钟前
5分钟前
yyg发布了新的文献求助30
5分钟前
楠茸完成签到 ,获得积分10
5分钟前
5分钟前
闪闪的谷梦完成签到 ,获得积分10
6分钟前
我是老大应助yyg采纳,获得10
6分钟前
feiCheung完成签到 ,获得积分10
6分钟前
二二二发布了新的文献求助50
6分钟前
7分钟前
7分钟前
7分钟前
12345完成签到 ,获得积分20
7分钟前
8分钟前
开朗硬币发布了新的文献求助10
8分钟前
Worenxian完成签到,获得积分10
8分钟前
8分钟前
lihongjie发布了新的文献求助10
8分钟前
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779106
求助须知:如何正确求助?哪些是违规求助? 3324745
关于积分的说明 10219794
捐赠科研通 3039837
什么是DOI,文献DOI怎么找? 1668452
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503