Reconstructing Long‐Term Forest Age of China by Combining Forest Inventories, Satellite‐Based Forest Age and Forest Cover Data Sets

森林资源清查 森林生态学 植树造林 中国 森林动态 地理 次生林 森林经营 森林恢复 碳汇 森林覆盖 老林 林业 环境科学 自然地理学 生态系统 生态学 考古 生物
作者
Jiangzhou Xia,Xiaosheng Xia,Yang Chen,Ruoque Shen,Zheyuan Zhang,Boyi Liang,Jia Wang,Wenping Yuan
出处
期刊:Journal Of Geophysical Research: Biogeosciences [Wiley]
卷期号:128 (7) 被引量:10
标识
DOI:10.1029/2023jg007492
摘要

Abstract Forest age is one of the most important ecosystem characters for accurately estimating the magnitude and potential of carbon sink in forest ecosystems. During the past 40 years, national ecological restoration projects have led to the near doubling of the forest cover area in China, which has also substantially affected the dynamics of forest age. Therefore, there is an urgent need to generate long‐term forest age maps for China. This study reconstructed China forest age datasets (CFAD) from 1980 to 2015 at five year intervals at a 1 km spatial resolution by merging a satellite‐based forest age map in 2010 and forest cover dynamic maps from 1980 to 2015. The random forest method was used to reconstruct the forest age where forest age could not be inferred from the forest age base map in 2010 directly. CFAD showed a good agreement with the province‐level mean forest age derived from the several national forest inventories ( R 2 ranged from 0.66 to 0.86). In general, the younger forests are mainly distributed in southern and eastern China. The older forests are mainly distributed in the mountain areas of northeast, northwest and southwest China. The average age of China's forests increased from 18.2 to 44.0 years old from 1980 to 2015. Based on the current forest age and future afforestation planning, the average forest age in China is predicted to reach 71.6 years old in 2060. The CFAD provides an alternative data set to obtain improved estimates of local and national forest carbon sinks in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk发布了新的文献求助10
刚刚
2秒前
8秒前
Hart发布了新的文献求助10
8秒前
panpan发布了新的文献求助10
13秒前
Galri完成签到 ,获得积分10
13秒前
烟花应助nissy采纳,获得10
14秒前
Callan发布了新的文献求助10
15秒前
独角大盗完成签到 ,获得积分10
18秒前
maoni应助qq采纳,获得10
19秒前
研友_VZG7GZ应助Dale采纳,获得10
19秒前
西北完成签到,获得积分10
22秒前
23秒前
panpan完成签到,获得积分10
23秒前
23秒前
TT完成签到,获得积分10
26秒前
27秒前
27秒前
援兮发布了新的文献求助30
28秒前
听听看完成签到,获得积分10
28秒前
小米发布了新的文献求助10
28秒前
30秒前
Dale发布了新的文献求助10
31秒前
nissy发布了新的文献求助10
31秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
无花果应助科研通管家采纳,获得10
34秒前
OKOK应助科研通管家采纳,获得10
34秒前
英姑应助科研通管家采纳,获得10
34秒前
平奥辉应助科研通管家采纳,获得10
34秒前
kk应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
852应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
我是老大应助科研通管家采纳,获得10
34秒前
晶晶完成签到 ,获得积分10
38秒前
我是老大应助一颗白菜采纳,获得10
39秒前
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171475
求助须知:如何正确求助?哪些是违规求助? 3706954
关于积分的说明 11695834
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860819
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754