An Intelligent System with Reduced Readout Power and Lightweight CNN for Vision Applications

计算机科学 像素 片上多核系统 管道(软件) 人工智能 图像传感器 计算机硬件 计算机视觉 图像处理 嵌入式系统 实时计算 芯片上的系统 图像(数学) 程序设计语言
作者
Wilfred Kisku,Amandeep Kaur,Deepak Mishra
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2023.3290103
摘要

An always-on intelligent system comprising of an image sensor requires continuous functioning of each pixel. This includes sensing the illumination content of the scene and also the conversion of the analog values into their digital representations. Therefore, power consumption during analog to digital conversion and computational cost at the image sensor module become critical while designing a system that is always-on and incorporates intelligence near the sensor module. This work focuses on the inherent property of the ADC for converting the analog pixel values to digital values by taking a defined number of analog-to-digital converter (ADC) cycles. The design factors considered are (1) Power saving due to reduced ADC conversion cycles for each pixel, (2) The reduced bit-precision of the processing unit to reduce hardware cost, (3) The dataflow design through hls4ml, which produces parallel computational modes for low latency CNN architectures. The proposed work implements two lightweight CNN models with reduced parameters as compared to the original architectural models of VGG16 (like) and SqueezeNet (like) which are trained in Qkeras and deployed on Zynq UltraScale+ MPSoC board. In addition, the design pipeline is validated on the MobileNetV2 and GhostNet architectures to demonstrate its generalization ability. A detailed analysis shows that limiting the number of ADC bits from 8 to 4 reduces the mean accuracy merely from 50.3 to 49.17 for VGG16 (like) and 67.83 to 67.80 for SqueezeNet (like) model, however, the readout power is significantly reduced from 140.45 mW to 7.7 mW for STL-10 dataset with 96 × 96 image resolution. Additional experiments are conducted with CIFAR-10 and mini-ImageNet datasets for classification and with Oxford-IIIT Pet Dataset for segmentation. The proposed work, thus, provides empirical evidence that a reasonable performance for intelligent vision tasks with power saving can be achieved by tuning CNN models to work with reduced ADC bit precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NINISO发布了新的文献求助10
1秒前
zhangjingchang完成签到,获得积分10
2秒前
8秒前
loka完成签到,获得积分10
9秒前
10秒前
研友_VZG7GZ应助Finger采纳,获得30
11秒前
清脆元冬发布了新的文献求助10
14秒前
16秒前
清爽冷风完成签到 ,获得积分10
17秒前
20秒前
西大喜完成签到,获得积分10
20秒前
24秒前
Miya完成签到 ,获得积分10
25秒前
Finger发布了新的文献求助30
26秒前
一二发布了新的文献求助10
27秒前
Abi完成签到,获得积分10
28秒前
清脆元冬完成签到,获得积分20
28秒前
随意完成签到,获得积分10
28秒前
29秒前
Fiee完成签到 ,获得积分10
29秒前
烦恼都走开完成签到,获得积分10
32秒前
wz87完成签到,获得积分10
33秒前
Lxxxxx完成签到,获得积分10
35秒前
35秒前
ke完成签到,获得积分20
35秒前
39秒前
ke发布了新的文献求助20
40秒前
vision发布了新的文献求助10
41秒前
不缺人YYDS发布了新的文献求助10
41秒前
shoplog发布了新的文献求助10
45秒前
ldk完成签到,获得积分10
48秒前
在吃饭的时候吃饭完成签到,获得积分10
50秒前
vision完成签到,获得积分10
51秒前
安静的火车完成签到,获得积分10
52秒前
华仔应助ke采纳,获得10
59秒前
shoplog完成签到,获得积分10
1分钟前
Firstoronre完成签到,获得积分10
1分钟前
碧阳的尔风完成签到,获得积分10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
calemolet应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549