电介质
电场
纳米-
纳米复合材料
介孔材料
纳米技术
材料科学
基质(水族馆)
领域(数学)
光电子学
凝聚态物理
物理
化学
复合材料
量子力学
数学
纯数学
生物化学
海洋学
地质学
催化作用
作者
Fan Xu,Yuke Li,Qing Zou,Yu He,Zijia Shen,Chen Li,Huijuan Zhang,Feipeng Wang,Jian Li,Yu Wang
标识
DOI:10.1038/s41467-022-35623-5
摘要
Abstract For the upsurge of high breakdown strength ( $${{{{{{\rm{E}}}}}}}_{{{{{{\rm{b}}}}}}}$$ E b ), efficiency ( $${{{{{\rm{\eta }}}}}}$$ η ), and discharge energy density ( $${{{{{{\rm{U}}}}}}}_{{{{{{\rm{e}}}}}}}$$ U e ) of next-generation dielectrics, nanocomposites are the most promising candidates. However, the skillful regulation and application of nano-dielectrics have not been realized so far, because the mechanism of enhanced properties is still not explicitly apprehended. Here, we show that the electric field cavity array in the outer interface of nanosieve-substrate could modulate the potential distribution array and promote the flow of free charges to the hole, which works together with the intrinsic defect traps of active Co 3 O 4 surface to trap and absorb high-energy carriers. The electric field and potential array could be regulated by the size and distribution of mesoporous in 2-dimensional nano-sieves. The poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposites film exhibits an $${{{{{{\rm{E}}}}}}}_{{{{{{\rm{b}}}}}}}$$ E b of 803 MV m −1 with up to 80% enhancement, accompanied by high $${{{{{{\rm{U}}}}}}}_{{{{{{\rm{e}}}}}}}$$ U e = 41.6 J cm −3 and $${{{{{\rm{\eta }}}}}}\,$$ η ≈ 90%, outperforming the state-of-art nano-dielectrics. These findings enable deeper construction of nano-dielectrics and provide a different way to illustrate the intricate modification mechanism from macro to micro.
科研通智能强力驱动
Strongly Powered by AbleSci AI