Temporal Convolutional Networks with RNN approach for chaotic time series prediction

计算机科学 混乱的 循环神经网络 水准点(测量) 时间序列 人工智能 人工神经网络 机器学习 深度学习 洛伦兹系统 系列(地层学) 股市预测 数据挖掘 股票市场 大地测量学 古生物学 生物 地理
作者
Hatice Vildan Dudukcu,Murat Taşkıran,Zehra Gülru Çam Taşkıran,Tülay Yıldırım
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:133: 109945-109945 被引量:65
标识
DOI:10.1016/j.asoc.2022.109945
摘要

The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of researchers. Chaotic time series prediction is making future predictions about these systems using previously observed data for a nonlinear chaotic system with a known initial condition. Chaotic time series prediction can be applied in many fields such as weather forecasting, finance and stock markets. Many disciplines work on solving time series prediction problem, ranging from forecasting weather events days in advance to traders predicting the future of stocks. In recent studies, it has been observed that hybrid deep neural network methods give better performance in solving time series prediction problems and have gained popularity in order to benefit from the advantages of more than one method in solving such problems. In this study, a hybrid deep neural network architecture is proposed for chaotic time series prediction. The used hybrid approach includes both temporal convolutional network to extract low level features from input and recurrent neural network layers such as long short-term memory and gated recurrent units to capture temporal information. Simulations were carried out on nine different chaotic time series dataset which are obtained from Lorenz, Rössler and a Lorenz-like chaotic equation sets, and twenty-one electrocardiogram (ECG) recordings of patients with arrhythmias. In the benchmark study, in which twelve different methods, including classical machine learning, deep neural network and hybrid models were used, the proposed model achieved the best prediction performance with an average root-mean-square error (RMSE) value of 0.0022 for chaotic dataset and 0.0082 for ECG arrhythmia dataset. Performance evaluation metrics show that the proposed hybrid architecture can compete with the models in state-of-the-art studies in chaotic time series prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eo发布了新的文献求助10
刚刚
小靳发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
领导范儿应助zgl0806采纳,获得10
2秒前
小米发布了新的文献求助10
2秒前
桐桐应助科研通管家采纳,获得20
3秒前
3秒前
pluto应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
吴壮完成签到,获得积分0
4秒前
浮游应助科研通管家采纳,获得10
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
舒适白风应助加油采纳,获得10
4秒前
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
壹贰叁应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
孔孔发布了新的文献求助10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
5秒前
所所应助科研通管家采纳,获得10
5秒前
6秒前
阿依咕噜完成签到,获得积分10
6秒前
syl发布了新的文献求助30
6秒前
王丹丹完成签到,获得积分10
7秒前
jason完成签到,获得积分10
8秒前
8秒前
Depeng完成签到,获得积分10
8秒前
10秒前
七之完成签到,获得积分10
12秒前
Akim应助和谐煜祺采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365