Temporal Convolutional Networks with RNN approach for chaotic time series prediction

计算机科学 混乱的 循环神经网络 水准点(测量) 时间序列 人工智能 人工神经网络 机器学习 深度学习 洛伦兹系统 系列(地层学) 股市预测 数据挖掘 股票市场 大地测量学 古生物学 生物 地理
作者
Hatice Vildan Dudukcu,Murat Taşkıran,Zehra Gülru Çam Taşkıran,Tülay Yıldırım
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:133: 109945-109945 被引量:65
标识
DOI:10.1016/j.asoc.2022.109945
摘要

The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of researchers. Chaotic time series prediction is making future predictions about these systems using previously observed data for a nonlinear chaotic system with a known initial condition. Chaotic time series prediction can be applied in many fields such as weather forecasting, finance and stock markets. Many disciplines work on solving time series prediction problem, ranging from forecasting weather events days in advance to traders predicting the future of stocks. In recent studies, it has been observed that hybrid deep neural network methods give better performance in solving time series prediction problems and have gained popularity in order to benefit from the advantages of more than one method in solving such problems. In this study, a hybrid deep neural network architecture is proposed for chaotic time series prediction. The used hybrid approach includes both temporal convolutional network to extract low level features from input and recurrent neural network layers such as long short-term memory and gated recurrent units to capture temporal information. Simulations were carried out on nine different chaotic time series dataset which are obtained from Lorenz, Rössler and a Lorenz-like chaotic equation sets, and twenty-one electrocardiogram (ECG) recordings of patients with arrhythmias. In the benchmark study, in which twelve different methods, including classical machine learning, deep neural network and hybrid models were used, the proposed model achieved the best prediction performance with an average root-mean-square error (RMSE) value of 0.0022 for chaotic dataset and 0.0082 for ECG arrhythmia dataset. Performance evaluation metrics show that the proposed hybrid architecture can compete with the models in state-of-the-art studies in chaotic time series prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
2秒前
烟花应助qaz采纳,获得10
2秒前
Hello应助Melody采纳,获得10
4秒前
ozma发布了新的文献求助10
5秒前
阿V发布了新的文献求助10
6秒前
罗大黑呀完成签到,获得积分10
7秒前
善学以致用应助平淡茈采纳,获得10
8秒前
yanghong完成签到,获得积分10
8秒前
脑洞疼应助3712采纳,获得10
10秒前
LZQ应助Aiden采纳,获得30
10秒前
11秒前
摸鱼咯完成签到 ,获得积分10
13秒前
14秒前
xiaoman完成签到,获得积分10
16秒前
shelemi发布了新的文献求助10
16秒前
16秒前
NexusExplorer应助顺利的莺采纳,获得10
17秒前
科研通AI5应助松19采纳,获得30
17秒前
卿君完成签到,获得积分10
18秒前
18秒前
18秒前
科研通AI5应助zyxyy采纳,获得10
18秒前
7123发布了新的文献求助10
18秒前
宝贝丫头完成签到 ,获得积分10
20秒前
丁丁完成签到,获得积分10
20秒前
xuan发布了新的文献求助10
20秒前
21秒前
yuaner发布了新的文献求助10
21秒前
shelemi完成签到,获得积分10
22秒前
乔垣结衣发布了新的文献求助10
22秒前
粗犷的半凡完成签到,获得积分10
22秒前
22秒前
24秒前
顾矜应助duckweedyan采纳,获得10
24秒前
Asahi完成签到 ,获得积分10
25秒前
ozma完成签到,获得积分10
25秒前
27秒前
28秒前
朝朝完成签到,获得积分10
28秒前
cherry发布了新的文献求助10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243