Experimental validation of machine learning models for prediction of the thickness distribution of directionally rolled copper strips under scaling law

人工神经网络 缩放比例 有限元法 拉深 一致性(知识库) 计算机科学 人工智能 条状物 空白 算法 数学 机械工程 工程类 结构工程 几何学
作者
S.P. Sundar Singh Sivam,R. Rajendran
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (8): 3204-3214 被引量:1
标识
DOI:10.1177/09544062221135513
摘要

Predicting the results of multi-stage deep drawing in determining the thickness distribution and thinning of the workpiece are measures that will help reduce production costs by saving materials and production time. Machine Learning (ML) technique is a promising method for predicting the thickness distribution (TD) of drawn copper metal. Macro and micro products are currently used in sensitive electronic and structural applications. In this study, ML defines the relationship between the scaled thickness and the respective number of stages governed by the scaling law. It includes the development of Artificial Neural Network (ANN) tools based on machine learning to model the relationship between thickness by scaling law and stages based on multi-stage deep-drawn cups. TD is a measure of consistency. The TD is measured from the initial blank of 1500 mm long, 750 mm wide, and 6 mm thick Cu strip, reduced by 50% in nine successive steps until a final thickness of 0.1875 mm. Two ANN models used for TD prediction are Bayesian regularization (BR) and Levenberg-Marquardt (LM) algorithms. A trained machine learning model can successfully predict and verify the unseen data of 1.5 and 0.38 mm TD. ANN is used to predict the Finite Element Analysis (FEA) results and confirm them through the experimental results. The developed model can predict the TD of the multi-stage cup with the die design parameters. The difference between the TD predicted value and the measured value is based on the simulation results of multi-stage cups using the finite element method. When the predicted and measured TD, the difference in cup drawing depth is 0.5%–2.0%. The results show that the LM model is suitable for predicting the TD of formed copper cups following the scaling law.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
4秒前
香蕉诗蕊给lbw的求助进行了留言
4秒前
5秒前
6秒前
7秒前
8秒前
8秒前
我是老大应助Tsuki采纳,获得10
9秒前
9秒前
wujiwuhui发布了新的文献求助10
10秒前
kamisama完成签到,获得积分10
13秒前
13秒前
13秒前
yimin发布了新的文献求助10
14秒前
14秒前
Q华完成签到 ,获得积分10
16秒前
fearlessji完成签到 ,获得积分10
18秒前
吃肉的兔子完成签到,获得积分10
19秒前
盐焗鸡完成签到 ,获得积分10
20秒前
万能图书馆应助cbc采纳,获得10
21秒前
22秒前
JamesPei应助唠叨的觅海采纳,获得10
22秒前
舒服的灰狼完成签到,获得积分10
25秒前
tfli发布了新的文献求助10
25秒前
Antonio完成签到,获得积分10
27秒前
qingchi完成签到,获得积分10
27秒前
27秒前
顾矜应助yimin采纳,获得10
28秒前
31秒前
31秒前
31秒前
32秒前
zx完成签到,获得积分10
33秒前
Dr-Luo完成签到 ,获得积分10
34秒前
34秒前
无极微光应助科研通管家采纳,获得20
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559756
求助须知:如何正确求助?哪些是违规求助? 4644836
关于积分的说明 14673722
捐赠科研通 4586081
什么是DOI,文献DOI怎么找? 2516131
邀请新用户注册赠送积分活动 1489893
关于科研通互助平台的介绍 1460828