EXPRESS: Multi-Agent Deep Reinforcement Learning for Multi-Echelon Inventory Management

强化学习 计算机科学 库存管理 运营管理 钢筋 运筹学 业务 人工智能 心理学 经济 数学 社会心理学
作者
Xiaotian Liu,Ming Hu,Chunyi Peng,Yaodong Yang
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241305863
摘要

We apply Multi-Agent Deep Reinforcement Learning (MADRL) to multi-echelon inventory management problems and evaluate MADRL’s performance to minimize the overall costs of a supply chain. We also examine whether the upfront-only information-sharing mechanism used in MADRL helps alleviate the bullwhip effect in a supply chain. We apply Heterogeneous-Agent Proximal Policy Optimization (HAPPO), a MADRL algorithm, to the decentralized multi-echelon inventory management problems in both a serial supply chain and a supply chain network. Our results show that policies constructed by HAPPO achieve lower overall costs than policies constructed by single-agent deep reinforcement learning and other heuristic policies. Also, the application of HAPPO results in a less significant bullwhip effect than policies constructed by single-agent deep reinforcement learning where information is not shared among actors. Somewhat surprisingly, compared to using the overall costs of the system as a minimization target for each actor, HAPPO achieves lower overall costs when the minimization target for each actor is a combination of its own costs and the overall costs of the system. Our results provide a new perspective on the benefit of information sharing inside the supply chain that helps alleviate the bullwhip effect and improve the overall performance of the system. Upfront information sharing and action coordination in model training among actors is essential, with the former more essential, for improving a supply chain’s overall performance when applying MADRL. Neither actors being fully self-interested nor actors being fully system-focused leads to the best practical performance of policies learned and constructed by MADRL. Our results also verify MADRL’s potential in solving various multi-echelon inventory management problems with complex supply chain structures and in non-stationary market environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助米奇妙妙虫采纳,获得10
1秒前
科研通AI5应助云之上采纳,获得10
1秒前
科研通AI2S应助ssw采纳,获得10
2秒前
5秒前
垃圾桶发布了新的文献求助30
5秒前
6秒前
Hello应助Math4396采纳,获得10
7秒前
小陆发布了新的文献求助10
7秒前
7秒前
8秒前
10秒前
沐夏完成签到,获得积分10
10秒前
yst发布了新的文献求助10
11秒前
科研通AI5应助小熊猫采纳,获得30
11秒前
12秒前
合适忆之完成签到,获得积分10
12秒前
12秒前
不要加糖发布了新的文献求助10
13秒前
徐果发布了新的文献求助10
14秒前
yyxmh羽儿发布了新的文献求助10
14秒前
慈祥的蛋挞完成签到,获得积分10
14秒前
jx完成签到,获得积分10
14秒前
15秒前
多情宛海完成签到 ,获得积分10
15秒前
Math4396发布了新的文献求助10
16秒前
妞妞完成签到,获得积分10
16秒前
科研通AI5应助秦pale采纳,获得10
18秒前
18秒前
18秒前
lll完成签到 ,获得积分10
18秒前
金仕王完成签到,获得积分10
18秒前
lxy应助刘艺伟采纳,获得10
19秒前
带久完成签到 ,获得积分20
20秒前
Ai发布了新的文献求助10
20秒前
丘比特应助小陆采纳,获得10
21秒前
甜甜完成签到,获得积分10
22秒前
22秒前
梦里潇湘发布了新的文献求助10
22秒前
土拨鼠发布了新的文献求助10
23秒前
晗月完成签到,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150