A Bayesian Inference-Based Method for Uncertainty Analysis in Raman Spectroscopy

贝叶斯概率 计算机科学 推论 拉曼光谱 贝叶斯推理 人工智能 数据挖掘 光学 物理
作者
Hanxuan Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 7746-7756 被引量:1
标识
DOI:10.1109/access.2024.3510927
摘要

Raman spectroscopy is an important analytical technique with advantages in non-destructive and rapid analysis, and it is widely used in fields such as chemical analysis, materials science, and biomedical research. The integration of Raman spectroscopy with deep learning methods has been shown to produce excellent chemical analysis results. However, challenges arise when neural networks are faced with issues such as environmental noise and the analysis of samples outside the training dataset, where the reliability and interpretability of the prediction results become critical. Bayesian inference allows for the updating of the hypothesis probability of the neural network’s predictions, thereby incorporating additional evidence and information. To address the issue of uncertainty analysis in Raman spectroscopy predictions, this paper proposes a novel uncertainty analysis method based on the combination of neural networks and Bayesian inference, referred to as BayesianVGG. This method achieves accurate sample classification while quantifying the confidence of the model’s output results through Bayesian inference, significantly enhancing the robustness of Raman spectroscopy analysis in complex environments. In experiments on an animal blood Raman spectroscopy dataset (both reflection and transmission modes), the proposed method achieves classification accuracies of 95.36% and 94.83%, respectively, showing slight improvements over other classical machine learning and neural network methods. Furthermore, by generating prediction confidence heatmaps, BayesianVGG effectively addresses the uncertainty analysis of unknown samples, thereby improving the interpretability of the prediction results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助百鳴采纳,获得20
刚刚
zm完成签到,获得积分10
刚刚
刚刚
Akim应助zpphlw采纳,获得10
1秒前
1秒前
重要砖头完成签到,获得积分10
2秒前
3秒前
Mlwwq发布了新的文献求助10
3秒前
开放的可冥完成签到,获得积分10
4秒前
jackzzs完成签到,获得积分10
4秒前
Orange应助追光者采纳,获得10
4秒前
5秒前
5秒前
17784158937应助abcd_1067采纳,获得10
6秒前
李响发布了新的文献求助10
6秒前
7秒前
小马甲应助大胆的天德采纳,获得10
8秒前
苏苏发布了新的文献求助10
9秒前
叶宇豪发布了新的文献求助10
9秒前
hygge完成签到 ,获得积分10
9秒前
Sinner发布了新的文献求助10
9秒前
热衷完成签到,获得积分10
9秒前
无极微光应助hahaya采纳,获得20
10秒前
10秒前
火星上的半梅完成签到,获得积分10
10秒前
百鳴发布了新的文献求助20
11秒前
orixero应助Mlwwq采纳,获得10
12秒前
浮游应助inin采纳,获得10
12秒前
12秒前
深情安青应助一直以来采纳,获得10
13秒前
李允广发布了新的文献求助10
14秒前
帅到被人砍完成签到,获得积分10
15秒前
15秒前
15秒前
叶宇豪完成签到,获得积分10
15秒前
心灵尔安完成签到,获得积分10
16秒前
16秒前
追光者发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
Bubblefish完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547574
求助须知:如何正确求助?哪些是违规求助? 4633043
关于积分的说明 14629186
捐赠科研通 4574618
什么是DOI,文献DOI怎么找? 2508426
邀请新用户注册赠送积分活动 1484866
关于科研通互助平台的介绍 1455963