A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy

热的 激光器 材料科学 医学物理学 计算机科学 医学 物理 光学 热力学
作者
Ting-Ting Gao,Libin Liang,Hui Ding,Chao Zhang,Wang Xiu,Wenhan Hu,Kai Zhang,Guangzhi Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adb3ea
摘要

Accurate prediction of thermal damage extent is essential for effective and precise thermal therapy, especially in brain laser interstitial thermal therapy (LITT). Immediate postoperative contrast-enhanced T1-weighted imaging (CE-T1WI) is the primary method for clinically assessing in vivo thermal damage after image-guided LITT. CE-T1WI reveals a hyperintense enhancing rim surrounding the target lesion, which serves as a key radiological marker for evaluating the thermal damage extent. Although widely used in clinical practice, traditional thermal damage models rely on empirical parameters from in vitro experiments, which can lead to inaccurate predictions of thermal damage in vivo. Additionally, these models predict only two tissue states (damaged or undamaged), failing to capture three tissue states observed on post-CE-T1WI images, highlighting the need for improved thermal damage prediction methods. This study proposes a novel Convolutional Long Short-Term Memory (ConvLSTM)-based model that utilizes intraoperative temperature distribution history data measured by magnetic resonance temperature imaging (MRTI) during LITT to predict the enhancing rim on post-CE-T1WI images. This method was implemented and evaluated on retrospective data from 56 patients underwent brain LITT. Main results: The proposed model effectively predicts the enhancing rim on postoperative images, achieving an average Dice Similarity Coefficient (DSC) of 0.82 (±0.063) on the test dataset. Furthermore, it generates real-time predicted thermal damage area variation trends that closely resemble those of the traditional thermal damage model, suggesting potential for real-time prediction of thermal damage extent. This method could provide a valuable tool for visualizing and assessing intraoperative thermal damage extent. .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
十字路口完成签到,获得积分10
2秒前
5秒前
彩虹猫完成签到 ,获得积分10
6秒前
maolingyu完成签到,获得积分10
11秒前
闪闪的向梦完成签到,获得积分10
11秒前
丹丹子完成签到 ,获得积分10
14秒前
cdercder应助复杂的溪流采纳,获得10
18秒前
希望天下0贩的0应助lilac采纳,获得10
19秒前
笑点低不言完成签到,获得积分10
21秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
阿飘应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得10
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
阿飘应助科研通管家采纳,获得10
23秒前
和谐诗双完成签到 ,获得积分10
23秒前
ding应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
iNk应助科研通管家采纳,获得10
23秒前
23秒前
阿飘应助科研通管家采纳,获得10
23秒前
23秒前
ding应助科研通管家采纳,获得10
23秒前
24秒前
脑洞疼应助zrs采纳,获得10
24秒前
25秒前
田様应助雨前知了采纳,获得10
27秒前
FOREST完成签到,获得积分10
27秒前
吱吱熊sama完成签到,获得积分10
28秒前
Airy完成签到,获得积分10
30秒前
lilac发布了新的文献求助10
30秒前
合适怜南完成签到,获得积分10
30秒前
32秒前
32秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315