A Multimodal Biomedical Foundation Model Trained from Fifteen Million Image–Text Pairs

基础(证据) 图像(数学) 计算机科学 人工智能 情报检索 计算机视觉 历史 考古
作者
Sheng Zhang,Yanbo Xu,Naoto Usuyama,Hanwen Xu,Jaspreet Bagga,Robert Tinn,Sam Preston,Rajesh Rao,Mu Wei,Naveen Valluri,Cliff Wong,Andrea Tupini,Yu Wang,Matt Mazzola,Swadheen Shukla,Lars Lidén,Jianfeng Gao,Angela Crabtree,Brian Piening,Carlo Bifulco
标识
DOI:10.1056/aioa2400640
摘要

BackgroundBiomedical data are inherently multimodal, comprising physical measurements and natural-language narratives. A generalist biomedical artificial intelligence (AI) model needs to simultaneously process different modalities of data, including text and images. Therefore, training an effective generalist biomedical model requires high-quality multimodal data, such as parallel image–text pairs.MethodsHere, we present PMC-15M, a novel dataset that is two orders of magnitude larger than existing biomedical multimodal datasets, such as MIMIC-CXR, and spans a diverse range of biomedical image types. PMC-15M contains 15 million biomedical image–text pairs collected from 4.4 million scientific articles. Based on PMC-15M, we have pretrained BiomedCLIP, a multimodal foundation model, with domain-specific adaptations tailored to biomedical vision–language processing.ResultsWe conducted extensive experiments and ablation studies on standard biomedical imaging tasks from retrieval to classification to visual question answering (VQA). BiomedCLIP achieved new state-of-the-art results in a wide range of standard datasets, substantially outperforming prior approaches. Intriguingly, by large-scale pretraining on diverse biomedical image types, BiomedCLIP even outperforms state-of-the-art radiology-specific models, such as BioViL, in radiology-specific tasks such as Radiological Society of North America (RSNA) pneumonia detection.ConclusionsBiomedCLIP is a fully open-access foundation model that achieves state-of-the-art performance on various biomedical tasks, paving the way for transformative multimodal biomedical discovery and applications. We release our models at aka.ms/biomedclip to facilitate future research in multimodal biomedical AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
云生发布了新的文献求助30
1秒前
gu完成签到,获得积分10
1秒前
小马甲应助一只想飞的朱采纳,获得10
1秒前
lilili6666发布了新的文献求助10
1秒前
CC柚完成签到,获得积分10
3秒前
馒头爸爸发布了新的文献求助10
3秒前
小K发布了新的文献求助10
3秒前
共享精神应助小可爱采纳,获得10
3秒前
智智完成签到 ,获得积分20
4秒前
折木浮华完成签到,获得积分10
4秒前
zzz关注了科研通微信公众号
4秒前
zzzzz发布了新的文献求助10
5秒前
朱向阳完成签到,获得积分10
5秒前
斯文败类应助任性铅笔采纳,获得10
5秒前
天才幸运鱼完成签到,获得积分10
6秒前
完美世界应助研友_LOK59L采纳,获得10
8秒前
Baibai完成签到,获得积分10
9秒前
一个Circle发布了新的文献求助10
10秒前
10秒前
11秒前
星辰大海应助青雾雨采纳,获得10
11秒前
12秒前
狂野紫伊发布了新的文献求助10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得30
13秒前
11完成签到,获得积分10
13秒前
顾子墨完成签到,获得积分10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
HI完成签到 ,获得积分10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
orixero应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4634339
求助须知:如何正确求助?哪些是违规求助? 4029802
关于积分的说明 12468608
捐赠科研通 3716217
什么是DOI,文献DOI怎么找? 2050693
邀请新用户注册赠送积分活动 1082157
科研通“疑难数据库(出版商)”最低求助积分说明 964349