已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of a deep learning algorithm for non-mass enhancement on breast MRI: comparison with radiologists’ interpretations at various levels

分割 医学 双雷达 乳房成像 磁共振成像 放射科 接收机工作特性 乳房磁振造影 人工智能 深度学习 置信区间 计算机科学 乳腺癌 乳腺摄影术 癌症 内科学
作者
Mariko Goto,Koji Sakai,Yasuchiyo Toyama,Yoshitomo Nakai,Kazuo Yamada
出处
期刊:Japanese Journal of Radiology [Springer Science+Business Media]
卷期号:41 (10): 1094-1103
标识
DOI:10.1007/s11604-023-01435-w
摘要

Abstract Purpose To evaluate the diagnostic performance of deep learning using the Residual Networks 50 (ResNet50) neural network constructed from different segmentations for distinguishing malignant and benign non-mass enhancement (NME) on breast magnetic resonance imaging (MRI) and conduct a comparison with radiologists with various levels of experience. Materials and methods A total of 84 consecutive patients with 86 lesions (51 malignant, 35 benign) presenting NME on breast MRI were analyzed. Three radiologists with different levels of experience evaluated all examinations, based on the Breast Imaging-Reporting and Data System (BI-RADS) lexicon and categorization. For the deep learning method, one expert radiologist performed lesion annotation manually using the early phase of dynamic contrast-enhanced (DCE) MRI. Two segmentation methods were applied: a precise segmentation was carefully set to include only the enhancing area, and a rough segmentation covered the whole enhancing region, including the intervenient non-enhancing area. ResNet50 was implemented using the DCE MRI input. The diagnostic performance of the radiologists’ readings and deep learning were then compared using receiver operating curve analysis. Results The ResNet50 model from precise segmentation achieved diagnostic accuracy equivalent [area under the curve (AUC) = 0.91, 95% confidence interval (CI) 0.90, 0.93] to that of a highly experienced radiologist (AUC = 0.89, 95% CI 0.81, 0.96; p = 0.45). Even the model from rough segmentation showed diagnostic performance equivalent to a board-certified radiologist (AUC = 0.80, 95% CI 0.78, 0.82 vs. AUC = 0.79, 95% CI 0.70, 0.89, respectively). Both ResNet50 models from the precise and rough segmentation exceeded the diagnostic accuracy of a radiology resident (AUC = 0.64, 95% CI 0.52, 0.76). Conclusion These findings suggest that the deep learning model from ResNet50 has the potential to ensure accuracy in the diagnosis of NME on breast MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jiaobu发布了新的文献求助30
1秒前
凡可可完成签到,获得积分10
4秒前
阿九发布了新的文献求助10
8秒前
王饱饱完成签到 ,获得积分10
8秒前
13秒前
15秒前
有魅力的书本完成签到 ,获得积分10
16秒前
moon发布了新的文献求助10
18秒前
上蹿下跳的猹完成签到,获得积分10
20秒前
lwm不想看文献完成签到 ,获得积分10
24秒前
jiaobu完成签到,获得积分20
25秒前
Kashing完成签到,获得积分10
26秒前
小张吃不胖完成签到 ,获得积分10
31秒前
xx完成签到 ,获得积分10
32秒前
领导范儿应助辛勤的乐曲采纳,获得10
38秒前
43秒前
43秒前
科研通AI5应助Q123ba叭采纳,获得10
44秒前
47秒前
48秒前
shaylie完成签到 ,获得积分10
49秒前
49秒前
49秒前
zhhhh发布了新的文献求助10
49秒前
52秒前
mingtian完成签到,获得积分10
52秒前
科研狗发布了新的文献求助10
52秒前
54秒前
Q123ba叭完成签到,获得积分10
54秒前
55秒前
ldykkkkk完成签到,获得积分10
57秒前
57秒前
57秒前
Q123ba叭发布了新的文献求助10
58秒前
58秒前
吴嘉俊完成签到 ,获得积分10
1分钟前
andrele发布了新的文献求助10
1分钟前
ldykkkkk发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281827
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457