An Insulator Defect Detection Model in Aerial Images Based on Multiscale Feature Pyramid Network

计算机科学 绝缘体(电) 电力传输 人工智能 航空影像 特征提取 稳健性(进化) 故障检测与隔离 目标检测 模式识别(心理学) 实时计算 计算机视觉 工程类 电气工程 图像(数学) 执行机构 化学 基因 生物化学
作者
Kun Hao,Guanke Chen,Lu Zhao,Zhisheng Li,Yonglei Liu,Chuanqi Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:104
标识
DOI:10.1109/tim.2022.3200861
摘要

The faults caused by insulator defects will seriously threaten the operational safety of the power grid. Therefore, insulator defect detection play a crucial role in inspecting transmission lines. Compared with traditional methods, the network such as You Only Look Once (YOLO) family based on deep learning have high accuracy and strong robustness in insulator recognition and fault detection. However, the performance of these network are usually affected by the shooting conditions as well as aerial images with diverse types of insulators and complex backgrounds, resulting in poor detection result. In addition, the relatively small insulator fault (bunch-drop) area in aerial images will also make detection difficult. To solve these problems, this paper proposes an improved insulator defect detection model based on YOLOv4 (ID-YOLO). To create our model, we design a new backbone network structure, Cross Stage Partial and Residual Split Attention Network (CSP-ResNeSt), that can solve the interference problem of complex backgrounds in aerial images to enhance the network's feature extraction capability. In addition, we adopt a new multiscale Bidirectional Feature Pyramid Network with Simple Attention Module (Bi-SimAM-FPN), which can address the difficulty of identifying a small scale of insulator defects in an image for more efficient feature fusion. We experimentally demonstrate that the mean average precision (mAP) of the proposed model is 95.63%, which is 3.5% higher than that of the YOLOv4. Most importantly, the detection speed of this model can reach 63 FPS, which meets the requirements of real-time detection of insulator bunch-drop faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
成长发布了新的文献求助10
刚刚
汉堡包应助知性的采珊采纳,获得10
刚刚
SYanan发布了新的文献求助30
1秒前
星辰大海应助堂yt采纳,获得10
1秒前
寻道图强应助敬老院N号采纳,获得30
1秒前
寻道图强应助敬老院N号采纳,获得30
1秒前
寻道图强应助敬老院N号采纳,获得30
1秒前
寻道图强应助敬老院N号采纳,获得30
1秒前
锦程发布了新的文献求助10
1秒前
1秒前
1秒前
柒洛关注了科研通微信公众号
1秒前
楠木发布了新的文献求助10
1秒前
珂颜堂AI发布了新的文献求助10
2秒前
艺术家发布了新的文献求助10
2秒前
瑶瑶啊发布了新的文献求助10
3秒前
3秒前
科研通AI6应助lgh采纳,获得10
4秒前
刘郎才气发布了新的文献求助10
4秒前
hongxia发布了新的文献求助10
4秒前
BaoCure发布了新的文献求助10
5秒前
玄风举报于夜中轮回求助涉嫌违规
5秒前
5秒前
idemipere完成签到,获得积分10
5秒前
嫩嫩完成签到 ,获得积分10
6秒前
6秒前
ff完成签到,获得积分10
6秒前
6秒前
孔乙己完成签到,获得积分10
6秒前
yimeng完成签到,获得积分10
7秒前
标致冬日发布了新的文献求助10
7秒前
中心湖小海棠完成签到,获得积分10
8秒前
SYanan完成签到,获得积分10
8秒前
vv发布了新的文献求助10
8秒前
8秒前
夏惋清完成签到 ,获得积分0
9秒前
mengtingmei完成签到,获得积分10
9秒前
zik应助Sabrina采纳,获得10
10秒前
猫喵喵完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630630
求助须知:如何正确求助?哪些是违规求助? 4723199
关于积分的说明 14974515
捐赠科研通 4788811
什么是DOI,文献DOI怎么找? 2557255
邀请新用户注册赠送积分活动 1518037
关于科研通互助平台的介绍 1478679