An Insulator Defect Detection Model in Aerial Images Based on Multiscale Feature Pyramid Network

计算机科学 绝缘体(电) 电力传输 人工智能 航空影像 特征提取 稳健性(进化) 故障检测与隔离 目标检测 模式识别(心理学) 实时计算 计算机视觉 工程类 电气工程 图像(数学) 执行机构 化学 基因 生物化学
作者
Kun Hao,Guanke Chen,Lu Zhao,Zhisheng Li,Yonglei Liu,Chuanqi Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:63
标识
DOI:10.1109/tim.2022.3200861
摘要

The faults caused by insulator defects will seriously threaten the operational safety of the power grid. Therefore, insulator defect detection play a crucial role in inspecting transmission lines. Compared with traditional methods, the network such as You Only Look Once (YOLO) family based on deep learning have high accuracy and strong robustness in insulator recognition and fault detection. However, the performance of these network are usually affected by the shooting conditions as well as aerial images with diverse types of insulators and complex backgrounds, resulting in poor detection result. In addition, the relatively small insulator fault (bunch-drop) area in aerial images will also make detection difficult. To solve these problems, this paper proposes an improved insulator defect detection model based on YOLOv4 (ID-YOLO). To create our model, we design a new backbone network structure, Cross Stage Partial and Residual Split Attention Network (CSP-ResNeSt), that can solve the interference problem of complex backgrounds in aerial images to enhance the network's feature extraction capability. In addition, we adopt a new multiscale Bidirectional Feature Pyramid Network with Simple Attention Module (Bi-SimAM-FPN), which can address the difficulty of identifying a small scale of insulator defects in an image for more efficient feature fusion. We experimentally demonstrate that the mean average precision (mAP) of the proposed model is 95.63%, which is 3.5% higher than that of the YOLOv4. Most importantly, the detection speed of this model can reach 63 FPS, which meets the requirements of real-time detection of insulator bunch-drop faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安青牛应助Wyoou采纳,获得10
刚刚
尊敬的夜安完成签到 ,获得积分10
刚刚
zym完成签到,获得积分10
刚刚
酷波er应助无奈秋荷采纳,获得10
1秒前
今后应助释怀采纳,获得30
1秒前
1秒前
科研通AI6应助小羊采纳,获得10
2秒前
jgh完成签到,获得积分20
2秒前
科研通AI6应助自然的芝麻采纳,获得30
2秒前
2秒前
3秒前
隐形曼青应助Patrick采纳,获得10
3秒前
5秒前
赵成龙发布了新的文献求助20
5秒前
冯嘉烨完成签到,获得积分10
5秒前
浮游应助小羊采纳,获得10
5秒前
科研通AI5应助茨恩层采纳,获得10
6秒前
dslnfakjnij完成签到 ,获得积分10
7秒前
情怀应助略略略采纳,获得10
7秒前
7秒前
lemon完成签到,获得积分10
7秒前
X_runner发布了新的文献求助10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
yejian发布了新的文献求助10
9秒前
ping应助xiaming采纳,获得10
9秒前
9秒前
Icy发布了新的文献求助10
10秒前
BSDL发布了新的文献求助10
10秒前
12秒前
俊逸幻柏发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
eternity发布了新的文献求助10
13秒前
13秒前
善学以致用应助肖岳采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4839767
求助须知:如何正确求助?哪些是违规求助? 4142336
关于积分的说明 12823831
捐赠科研通 3887277
什么是DOI,文献DOI怎么找? 2137212
邀请新用户注册赠送积分活动 1157262
关于科研通互助平台的介绍 1057113