Efficacy and application of the window-sliding ARIMA for daily and weekly wind speed forecasting

自回归积分移动平均 滑动窗口协议 风速 残余物 移动平均线 计算机科学 时间序列 风力发电 均方误差 统计 计量经济学 窗口(计算) 工程类 数学 气象学 地理 算法 电气工程 操作系统
作者
Sarita Sheoran,Sumanta Pasari
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:14 (5) 被引量:10
标识
DOI:10.1063/5.0108847
摘要

Accurate forecasting of renewable energy resources has a deep societal and environmental impact. In this work, we investigate the efficacy and applicability of the Window-Sliding ARIMA (WS-ARIMA) method for daily and weekly forecasting of wind speed. The WS-ARIMA technique with a fixed or variable window length belongs to the class of adaptive models. Particularly, the sliding windows of fixed length are popular in the areas of finance, energy, and traffic management, where the dataset of necessity exhibits a seasonal pattern. To carry out the proposed analysis, the following processes were done: (1) we first perform a stationarity test on the wind speed data and observe weak stationarity; (2) we then apply a grid search method to obtain the optimal parameters of the ARIMA model; (3) we implement the WS-ARIMA method for both daily and weekly wind speed data and compare the results with the conventional ARIMA model, and (4) finally, we perform a residual analysis as a post processing step to examine any systematic bias in the implemented models. The experimental results based on 15 years (2000–2014) of daily and weekly wind speed data collected at four different locations in India reveal that the WS-ARIMA method consistently outperforms the conventional ARIMA method. The inclusion of window sliding in ARIMA has resulted in the overall RMSE reduction up to 75% in daily wind speed data and 50% in the weekly data. Therefore, we recommend the WS-ARIMA model as one of the potential techniques in wind speed forecasting at daily and weekly time horizons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeeee完成签到,获得积分10
1秒前
机灵水卉发布了新的文献求助10
2秒前
2秒前
Nic发布了新的文献求助10
3秒前
4秒前
叶帆发布了新的文献求助10
4秒前
windli发布了新的文献求助10
5秒前
biubiu0417完成签到,获得积分10
7秒前
EuniceMGuo发布了新的文献求助100
8秒前
vvei发布了新的文献求助10
8秒前
11秒前
Nic完成签到,获得积分10
13秒前
华仔应助机灵水卉采纳,获得10
14秒前
脑洞疼应助dangniuma采纳,获得10
15秒前
清晨仪仪发布了新的文献求助10
17秒前
想摆烂发布了新的文献求助10
17秒前
18秒前
PANYW发布了新的文献求助10
19秒前
CodeCraft应助sxy采纳,获得10
20秒前
20秒前
22秒前
8282868完成签到,获得积分10
24秒前
25秒前
vvei完成签到,获得积分10
25秒前
桐桐应助阳佟靖柏采纳,获得30
25秒前
25秒前
想摆烂完成签到,获得积分10
26秒前
宅宅完成签到 ,获得积分10
26秒前
神勇乐安发布了新的文献求助10
26秒前
28秒前
28秒前
Peter_Zhu完成签到,获得积分10
29秒前
啦啦啦啦完成签到 ,获得积分10
29秒前
dangniuma发布了新的文献求助10
30秒前
31秒前
kk完成签到,获得积分10
33秒前
吴兰田完成签到,获得积分10
33秒前
33秒前
33秒前
lijunliang完成签到,获得积分10
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Evaluating and predicting disease damage accumulation of IgG4-RD over ten years: utility of the IgG4-related Disease Damage Index 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123391
求助须知:如何正确求助?哪些是违规求助? 3661322
关于积分的说明 11588764
捐赠科研通 3362103
什么是DOI,文献DOI怎么找? 1847430
邀请新用户注册赠送积分活动 911881
科研通“疑难数据库(出版商)”最低求助积分说明 827656