Blind source separation algorithm for noisy hydroacoustic signals based on decoupled convolutional neural networks

盲信号分离 卷积神经网络 算法 分离(统计) 计算机科学 源分离 语音识别 模式识别(心理学) 人工智能 机器学习 电信 频道(广播)
作者
Shuang Li,Zehui Yu,Peidong Wang,Guiqi Sun,Jingjing Wang
出处
期刊:Ocean Engineering [Elsevier]
卷期号:308: 118188-118188 被引量:5
标识
DOI:10.1016/j.oceaneng.2024.118188
摘要

Wireless communication technology has been widely used in marine engineering, marine ranching and Marine environmental monitoring. However, structural redundancy and functional confusion exist in applying neural networks in signal separation technology in underwater communication environments, which can result in a slower rate of signal separation and lead to confusion of parameters during transfer learning. Based on this, an end-to-end, internal functionally structured decoupled neural network (D-CNN) blind source separation (BSS) model is proposed in this paper, which can realize a neural network BSS algorithm with a well-defined structure and function. The one-dimensional convolutional neural network layer is used in algorithm to automatically extract observed signal's features, based on the features, and there are two generation modules of separation matrix and scaling coefficients. Then the two modules can be used to separate the observed signal and adjust the signal coefficients to obtain the separated signal. Finally the transfer learning technique is used to generalize the model, which reduces the transfer cost of the model in different application scenarios. Experimental results show that when the communication distance is set to 0.02 km–2 km, the MSE of independent signal and related signal can be reduced by 14.24% and 14.95% respectively compared with the nearest Neural FCA algorithm. The results prove that the proposed algorithm can accurately estimate the source signal and improve the signal reception quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的台灯完成签到,获得积分10
1秒前
1秒前
乐乐应助夏墨采纳,获得10
1秒前
1秒前
老迟到的秋完成签到,获得积分10
2秒前
AE86完成签到,获得积分10
3秒前
vv发布了新的文献求助10
3秒前
李爱国应助定烜采纳,获得10
3秒前
STZHEN完成签到,获得积分10
3秒前
5秒前
金刚小叮当完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
深情的鞯完成签到,获得积分10
8秒前
句号完成签到 ,获得积分10
8秒前
9秒前
9秒前
NexusExplorer应助小巧的傲松采纳,获得10
9秒前
9秒前
6666669完成签到,获得积分10
9秒前
迷路的静曼完成签到,获得积分10
10秒前
爆米花应助小米采纳,获得10
10秒前
11秒前
花痴的灵雁完成签到,获得积分20
11秒前
蚕宝宝发布了新的文献求助10
11秒前
YZ发布了新的文献求助10
11秒前
12秒前
霸气乐菱发布了新的文献求助10
12秒前
个性仙人掌完成签到 ,获得积分10
12秒前
12秒前
13秒前
6666669发布了新的文献求助10
13秒前
xcy发布了新的文献求助10
13秒前
Lee发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
hhh发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483859
求助须知:如何正确求助?哪些是违规求助? 4584378
关于积分的说明 14397171
捐赠科研通 4514246
什么是DOI,文献DOI怎么找? 2473912
邀请新用户注册赠送积分活动 1459913
关于科研通互助平台的介绍 1433260