元学习(计算机科学)
计算机科学
弹丸
事件(粒子物理)
人工智能
一次性
萃取(化学)
机器学习
任务(项目管理)
工程类
物理
有机化学
化学
系统工程
机械工程
量子力学
色谱法
作者
Xianda Li,Baheti Azhati
标识
DOI:10.1145/3652628.3652696
摘要
Event extraction plays a pivotal role in natural language processing (NLP), especially in few-shot learning environments where research is increasingly growing. This paper proposes an OPT model that integrates Model-Agnostic Meta-Learning (MAML) and prompt learning to enhance the performance of few-shot event extraction. Our method was tested on the ACE2005 dataset and compared with existing models. The results demonstrate the effectiveness of our approach in improving few-shot event extraction.
科研通智能强力驱动
Strongly Powered by AbleSci AI