Multi-Source Information Fusion Graph Convolution Network for traffic flow prediction

计算机科学 图形 信息融合 卷积(计算机科学) 融合 人工智能 数据挖掘 理论计算机科学 人工神经网络 语言学 哲学
作者
Qin Li,Pai Xu,Deqiang He,Yuankai Wu,Huachun Tan,Xuan Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124288-124288 被引量:14
标识
DOI:10.1016/j.eswa.2024.124288
摘要

As a fundamental technology in the field of intelligent transportation systems, traffic flow prediction has a wide range of applications. The utilization of Graph Convolutional Network (GCN) models is notable for capturing the complex spatial–temporal dependencies in traffic data, leading to a significant improvement in prediction accuracy. However, most existing graph construction methods overlook joint impact of auxiliary information such as weather and traffic speed on the road topology. Moreover, the research on interactions within time series at coarse temporal resolutions remains insufficiently explored, giving rise to unsatisfactory long-term prediction performance. In this study, we present a novel framework, namely Multi-Source Information Fusion Graph Convolution Network (MIFGCN), for spatial–temporal traffic flow prediction. Our key innovation lies in creating a dynamic graph that integrates weather, traffic speed, and global spatial information, effectively simulating significant traffic fluctuations caused by subtle ancillary information in the road network. Simultaneously, it captures the evolving hidden adjacency relationships between nodes over time. Furthermore, by combining with an attention-based temporal interaction module, MIFGCN learns multiscale temporal correlations at course temporal resolutions, enhancing the ability for long-term prediction. Experiments conducted on four real-world traffic datasets demonstrate that MIFGCN outperforms various state-of-the-art baselines, especially achieving a 10.50% average improvement on the PeMS08 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
何晶晶完成签到 ,获得积分10
刚刚
jcksonzhj发布了新的文献求助10
刚刚
迪迪发布了新的文献求助10
刚刚
刚刚
鱼块完成签到 ,获得积分10
1秒前
香蕉觅云应助梁成伟采纳,获得10
1秒前
1秒前
Owen应助菠菜采纳,获得10
1秒前
科研通AI6应助大块采纳,获得10
1秒前
安静的缘分完成签到,获得积分10
1秒前
yh完成签到,获得积分10
1秒前
AneyWinter66应助ZZY采纳,获得10
2秒前
尊敬帅哥完成签到,获得积分10
2秒前
LJJZZX发布了新的文献求助10
2秒前
境屾发布了新的文献求助30
2秒前
711notfound完成签到,获得积分10
2秒前
可爱的函函应助大山采纳,获得10
3秒前
lls发布了新的文献求助10
3秒前
粥粥粥发布了新的文献求助10
4秒前
xiaoxiao发布了新的文献求助30
4秒前
czq发布了新的文献求助10
4秒前
絮絮徐完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
小达发布了新的文献求助10
6秒前
AD应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Zx_1993应助科研通管家采纳,获得20
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
AD应助科研通管家采纳,获得10
7秒前
vera发布了新的文献求助10
7秒前
今后应助科研通管家采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597809
求助须知:如何正确求助?哪些是违规求助? 4683336
关于积分的说明 14829182
捐赠科研通 4661620
什么是DOI,文献DOI怎么找? 2536808
邀请新用户注册赠送积分活动 1504402
关于科研通互助平台的介绍 1470232