Advanced fusion of MTM-LSTM and MLP models for time series forecasting: An application for forecasting the solar radiation

系列(地层学) 时间序列 计算机科学 融合 人工智能 博克斯-詹金斯 概率预测 气象学 机器学习 自回归积分移动平均 地理 地质学 概率逻辑 哲学 语言学 古生物学
作者
Mahin Mohammadi,Saman Jamshidi,Alireza Rezvanian,Mehdi Gheisari,Ajay Kumar
出处
期刊:Measurement: Sensors [Elsevier BV]
卷期号:33: 101179-101179 被引量:23
标识
DOI:10.1016/j.measen.2024.101179
摘要

Accurate time series forecasting has become increasingly important across various domains such as finance, energy, and medicine. This study introduces an innovative hybrid model that leverages the power of neural networks, precisely Many To Many LSTM (MTM LSTM) and Multilayer Perceptron (MLP), to improve time series forecasting accuracy. In this new combination, we trained network MTM LSTM to approximate the target at each step, and finally, we used network MLP to combine these approximations. To perform the evaluation, we made a forecast for the amount of solar energy radiation in the city of Mashhad, Iran. The experiment results concerning MSE and MAE showed that the proposed method with five lags outperforms the standard models. We hypothesize that MTM LSTM can effectively capture solar radiation's intricate temporal dependencies and nonlinearity. At the same time, MLP can enhance function approximation by modeling complex interactions, resulting in improved forecast accuracy. By employing the hybrid MTM LSTM and MLP model, we achieved improved accuracy in predicting solar energy radiation, which has significant implications for the renewable energy sector and its energy management and planning applications. This research advances time series forecasting techniques, highlighting the effectiveness of combining neural networks to address complex and dynamic patterns in time-dependent data. Overall, our findings underscore the potential and efficacy of the proposed hybrid model as a robust tool for accurate time series forecasting in various domains, supporting effective decision-making and planning processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dajing发布了新的文献求助10
刚刚
1秒前
潇湘夜雨完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
kai发布了新的文献求助10
3秒前
3秒前
yue发布了新的文献求助30
3秒前
qing晴发布了新的文献求助10
3秒前
3秒前
4秒前
无限的南霜完成签到,获得积分10
4秒前
4秒前
5秒前
我是老大应助123qwe采纳,获得10
5秒前
5秒前
帅帅厅发布了新的文献求助10
5秒前
WNL发布了新的文献求助10
6秒前
shangshang发布了新的文献求助30
6秒前
7秒前
斯文智宸发布了新的文献求助10
7秒前
脑洞疼应助JLY采纳,获得10
7秒前
7秒前
橙色小瓶子完成签到,获得积分10
7秒前
直率海亦完成签到,获得积分10
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
薄雪草完成签到,获得积分10
8秒前
大个应助科研通管家采纳,获得10
8秒前
Orange应助郭小胖14采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
一二应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
矮小的凝冬完成签到,获得积分10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得20
8秒前
kk发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954553
求助须知:如何正确求助?哪些是违规求助? 4216890
关于积分的说明 13121171
捐赠科研通 3999023
什么是DOI,文献DOI怎么找? 2188625
邀请新用户注册赠送积分活动 1203758
关于科研通互助平台的介绍 1116092