亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Short-term traffic flow prediction based on hybrid decomposition optimization and deep extreme learning machine

期限(时间) 极限学习机 分解 计算机科学 人工智能 流量(数学) 流量(计算机网络) 机器学习 人工神经网络 数学 生态学 生物 计算机安全 几何学 量子力学 物理
作者
Ke Zhao,Dudu Guo,Miao Sun,Chenao Zhao,Hongbo Shuai,Chunfu Shao
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:647: 129870-129870 被引量:7
标识
DOI:10.1016/j.physa.2024.129870
摘要

Precise and robust short-term traffic flow forecasting is vital to reduce carbon emissions and alleviate traffic congestion. However, developing a traffic flow prediction model that is both precise and robust is exceedingly difficult, owing to the nonlinear and non-stationary characteristics of traffic flow. This study proposes a novel hybrid model (CPQDELM) in pursuit of this objective. This model attains satisfactory prediction performance by integrating the complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN), permutation entropy (PE), dung beetle optimization algorithm based on quantum inspiration and multistrategy improvement(QMDBO), and deep extreme learning machine (DELM). The proposed model employs CEEMDAN and PE for data decomposition and reorganization and then uses the QMDBO algorithm to optimize the DELM parameters. Experiments are conducted in this study to validate the efficacy of the QMDBO algorithm and the CPQDELM hybrid model, respectively. First, the effectiveness of the improvement strategy proposed in this study is verified by comparing the proposed QMDBO algorithm with six other algorithms through experiments on the CEC2021 test function. Secondly, using two real-world datasets, comparing the CPQDELM hybrid model and twelve baseline models. The results indicate that the model proposed in this study performs better than the current methodologies. The RMSE, MAE, and MAPE of the model proposed in this study are all decreased by 27.24%, 25.97%, and 33.56%, respectively, when compared to the conventional DELM, using the S321k51 dataset of mountain scenic highway as an example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kelsey完成签到 ,获得积分10
24秒前
27秒前
胖小羊完成签到 ,获得积分10
28秒前
43秒前
莫名是个小疯子完成签到,获得积分0
59秒前
Able完成签到,获得积分10
1分钟前
liuliu发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
kbcbwb2002完成签到,获得积分10
1分钟前
1分钟前
1分钟前
liuliu完成签到,获得积分20
1分钟前
bei发布了新的文献求助10
1分钟前
彩色靖儿完成签到 ,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
2分钟前
2分钟前
小蘑菇应助七大洋的风采纳,获得10
2分钟前
2分钟前
af完成签到,获得积分10
2分钟前
Paulolei关注了科研通微信公众号
2分钟前
Hdy完成签到,获得积分10
3分钟前
Sylvia卉完成签到,获得积分10
3分钟前
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
3分钟前
Jian发布了新的文献求助20
3分钟前
Crazybow5完成签到,获得积分10
3分钟前
3分钟前
kuoping完成签到,获得积分0
4分钟前
balko发布了新的文献求助100
4分钟前
4分钟前
雪山飞龙完成签到,获得积分10
4分钟前
4分钟前
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186990
求助须知:如何正确求助?哪些是违规求助? 4371968
关于积分的说明 13612717
捐赠科研通 4224803
什么是DOI,文献DOI怎么找? 2317204
邀请新用户注册赠送积分活动 1315835
关于科研通互助平台的介绍 1265238