Identification for heavy metals exposure on osteoarthritis among aging people and Machine learning for prediction: A study based on NHANES 2011-2020

全国健康与营养检查调查 逻辑回归 体质指数 四分位数 医学 婚姻状况 环境卫生 糖尿病 老年学 人口 内科学 置信区间 内分泌学
作者
Fang Xia,Qingwen Li,Xin Luo,Jinyi Wu
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:10 被引量:19
标识
DOI:10.3389/fpubh.2022.906774
摘要

Heavy metals are present in many environmental pollutants, and have cumulative effects on the human body through water or food, which can lead to several diseases, including osteoarthritis (OA). In this research, we aimed to explore the association between heavy metals and OA.We extracted 18 variables including age, gender, race, education level, marital status, smoking status, body mass index (BMI), physical activity, diabetes mellitus, hypertension, poverty level index (PLI), Lead (Pb), cadmium (Cd), mercury (Hg), selenium (Se), manganese (Mn), and OA status from National Health and Nutrition Examination Survey (NHANES) 2011-2020 datasets.In the baseline data, the t test and Chi-square test were conducted. For heavy metals, quartile description and limit of detection (LOD) were adopted. To analyze the association between heavy metals and OA among elderly subjects, multivariable logistic regression was conducted and subgroup logistic by gender was also carried out. Furthermore, to make predictions based on heavy metals for OA, we compared eight machine learning algorithms, and XGBoost (AUC of 0.8, accuracy value of 0.773, and kappa value of 0.358) was the best machine learning model for prediction. For interactive use, a shiny application was made (https://alanwu.shinyapps.io/NHANES-OA/).The overall and gender subgroup logistic regressions all showed that Pb and Cd promoted the prevalence of OA while Mn could be a protective factor of OA prevalence among the elderly population of the United States. Furthermore, XGBoost model was trained for OA prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
neo完成签到,获得积分10
刚刚
1秒前
ding应助柠檬采纳,获得20
2秒前
2秒前
无花果应助Dream采纳,获得50
3秒前
3秒前
21完成签到,获得积分10
4秒前
SYLH应助安琦采纳,获得10
4秒前
wqxm发布了新的文献求助30
5秒前
5秒前
gao发布了新的文献求助10
7秒前
8秒前
李健应助Fluoxetine采纳,获得10
9秒前
Napson完成签到,获得积分10
9秒前
9秒前
10秒前
乐观小之应助右声道采纳,获得10
10秒前
桐桐应助nini采纳,获得20
11秒前
yingzaifeixiang完成签到 ,获得积分10
11秒前
复杂曼云完成签到,获得积分10
11秒前
SciGPT应助houfei采纳,获得20
13秒前
迷路的书南应助zhang005on采纳,获得10
14秒前
14秒前
mumu发布了新的文献求助10
15秒前
柯飞扬完成签到,获得积分10
16秒前
大尾猫完成签到,获得积分10
16秒前
巴啦啦完成签到 ,获得积分20
19秒前
聪明的八宝粥完成签到,获得积分10
19秒前
NexusExplorer应助过奖啦采纳,获得10
20秒前
不知道发布了新的文献求助10
20秒前
lym54发布了新的文献求助10
20秒前
月亮陪我共眠完成签到 ,获得积分10
21秒前
乐乐应助Napson采纳,获得10
21秒前
情怀应助jtyt采纳,获得10
22秒前
wqxm完成签到,获得积分10
24秒前
爆米花应助无情的黑猫采纳,获得10
24秒前
25秒前
SciGPT应助不知道采纳,获得10
25秒前
26秒前
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835144
求助须知:如何正确求助?哪些是违规求助? 3377652
关于积分的说明 10499647
捐赠科研通 3097199
什么是DOI,文献DOI怎么找? 1705563
邀请新用户注册赠送积分活动 820629
科研通“疑难数据库(出版商)”最低求助积分说明 772149