Deep learning models for ICU readmission prediction: a systematic review and meta-analysis

医学 荟萃分析 重症监护医学 梅德林 急诊医学 内科学 政治学 法学
作者
Emanuele Koumantakis,Konstantina Remoundou,Nicoletta Colombi,Carmen Fava,Ioanna Roussaki,Alessia Visconti,Paola Berchialla
出处
期刊:Critical Care [BioMed Central]
卷期号:29 (1)
标识
DOI:10.1186/s13054-025-05642-x
摘要

Intensive Care Unit (ICU) readmissions are associated with increased morbidity, mortality, and healthcare costs. Therefore, determining an appropriate timing of ICU discharge is critical. In this context, deep learning (DL) approaches have attracted significant attention. We conducted a systematic review of studies developing or validating DL models for ICU readmission prediction, published up to March 4th, 2025, and indexed in PubMed, Embase, Scopus, and Web of Science. We summarised them along multiple dimensions, including outcome and population definition, DL architecture, reproducibility, generalizability, and explainability, and provided a meta-analytic estimate of model performance. We included 24 studies encompassing 49 DL models, predominantly trained on US-based datasets, and rarely subjected to external validation. There was considerable variability across study settings, including the definition and timeframe of the ICU readmission outcome, as well as DL architecture used, alongside a substantial risk of bias. Technical reproducibility and model interpretation were rare. A meta-analysis of AUROC values from 11 studies yielded a mean of 0.78 (95% CI = 0.72–0.84), with very high heterogeneity (I2 = 99.9%). Models targeting disease-specific ICU subpopulations achieved significantly higher performance (mean AUROC = 0.92, 95% CI = 0.89–0.95, p = 0.002), and substantially lower heterogeneity (I2 = 17.1%). DL models showed promising performances in predicting ICU readmissions, but exhibited several shortcomings, including low reproducibility, over-reliance on a few US-based datasets, and limited explainability. Additionally, the high heterogeneity and risk of bias limited our ability to assess their pooled performance through meta-analysis. Taken together, our observations suggest that the quality of the evidence regarding the application of DL approaches to ICU readmission prediction is poor, thus hindering their clinical applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丽丽完成签到,获得积分10
1秒前
peansant完成签到,获得积分10
4秒前
不秃燃的小老弟完成签到 ,获得积分10
8秒前
小饼一定要上岸完成签到 ,获得积分10
8秒前
朔朔朔朔子应助HHM采纳,获得10
11秒前
xiaofeixia完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
HHEHK完成签到 ,获得积分10
19秒前
李靖完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助50
31秒前
白白不喽完成签到 ,获得积分10
36秒前
阿尼完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
45秒前
aaa完成签到,获得积分10
47秒前
和气生财君完成签到 ,获得积分10
48秒前
Luna爱科研完成签到 ,获得积分10
52秒前
12305014077完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
58秒前
财路通八方完成签到 ,获得积分10
59秒前
林夕完成签到 ,获得积分10
59秒前
1分钟前
旧雨新知完成签到 ,获得积分0
1分钟前
babaoriley1发布了新的文献求助10
1分钟前
白凌风完成签到 ,获得积分10
1分钟前
喜悦的香之完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
独特跳跳糖完成签到 ,获得积分10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
Freddy完成签到 ,获得积分10
1分钟前
东都哈士奇完成签到,获得积分10
1分钟前
Yi羿完成签到 ,获得积分10
1分钟前
rockyshi完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
LYH完成签到,获得积分10
1分钟前
洪雨欣完成签到,获得积分10
1分钟前
超人不会飞完成签到 ,获得积分10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
月亮与六便士完成签到 ,获得积分10
1分钟前
mrwang完成签到 ,获得积分10
1分钟前
拼搏的飞莲完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926988
求助须知:如何正确求助?哪些是违规求助? 4196414
关于积分的说明 13032796
捐赠科研通 3968964
什么是DOI,文献DOI怎么找? 2175209
邀请新用户注册赠送积分活动 1192306
关于科研通互助平台的介绍 1102853