Meeting the Bare Minimum: Quality Assessment of Idiographic Temporal Networks Using Power Analysis and Predictive-Accuracy Analysis

作者
Yong Zhang,Jordan Revol,Eva Ceulemans,Laura F. Bringmann
出处
期刊:Advances in methods and practices in psychological science [SAGE]
卷期号:8 (4)
标识
DOI:10.1177/25152459251372116
摘要

The network theory of psychopathology inspired clinicians and researchers to use idiographic networks to study how symptoms of an individual interact over time, hoping to find the target symptom(s) for intervention to most effectively break this self-sustaining network. These networks are often based on the vector-autoregressive (VAR) model and rely on intensive longitudinal data collected in patients’ daily lives. Nowadays, one major challenge these networks are faced with is that they are used without sufficient quality assessments. Because VAR-based temporal networks are complex and highly parameterized, they can easily face problems of low statistical power and overfitting, especially when the time series available is short. In this study, we review existing idiographic-network studies with a focus on the number of variables and time points used in the analysis and show that the “big network, short time series” problem is prevalent. As potential solutions, we propose two simulation-based methods that aim to find the optimal number of time points to be collected: power analysis and predictive-accuracy analysis. Two applications of both methods are demonstrated: (a) “a priori”—informing the sample-size planning of future network studies and (b) “retrospective”—evaluating whether the sample size of existing network studies was large enough to avoid problems of low statistical power and overfitting. Results confirmed the observation that the sample sizes in past network studies are often insufficient, suggesting that findings of existing network studies should be critically assessed. Future idiographic-network studies are thus strongly advised to make more guided decisions on sample size using the proposed methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
veil完成签到 ,获得积分10
刚刚
虚空的容器完成签到,获得积分10
1秒前
2秒前
yx完成签到,获得积分20
2秒前
2秒前
滴滴叭叭完成签到,获得积分10
3秒前
4秒前
斯文败类应助冷艳惜梦采纳,获得30
4秒前
江夏清完成签到,获得积分10
4秒前
在水一方应助李Li采纳,获得10
4秒前
花生糕完成签到,获得积分10
5秒前
窦飞荷完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
Ava应助神内小大夫采纳,获得10
6秒前
Owen应助zhang采纳,获得10
7秒前
脑洞疼应助Lzzq采纳,获得10
7秒前
CipherSage应助wch666采纳,获得10
7秒前
尼古拉斯发布了新的文献求助10
7秒前
情怀应助yx采纳,获得10
9秒前
yubin.cao发布了新的文献求助30
9秒前
思源应助提拉米草采纳,获得10
9秒前
9秒前
9秒前
10秒前
arizaki7发布了新的文献求助20
11秒前
FNGG完成签到 ,获得积分10
11秒前
科研通AI6应助王小Q采纳,获得10
11秒前
Kinspact发布了新的文献求助10
11秒前
Su发布了新的文献求助10
12秒前
12秒前
椰汁发布了新的文献求助10
12秒前
14秒前
zxx完成签到 ,获得积分0
14秒前
内向汉堡发布了新的文献求助10
14秒前
LG发布了新的文献求助10
15秒前
hh完成签到,获得积分10
15秒前
慕青应助杨张浩采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293